<table>
<thead>
<tr>
<th>Company</th>
<th>Country</th>
<th>Name of presenter</th>
<th>Title and abstract</th>
<th>Bio of presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saudi Aramco, Yanbu</td>
<td>Saudi</td>
<td>Mohamed Ashraf Alsayed</td>
<td>Upgrade Refinery DCS to Experion
In line with the Process Automation Master Plan, Yanbu Refinery has completed a legacy DCS upgrade to Experion R410. This will enhance Operator Effectiveness, Alarm Management, Incident Avoidance, System Security and Reliability, and overcome hardware and software obsolescence issues. The upgrade enables ongoing projects in Tank Farm and Utilities areas to use the new C300 & Safety Manager plus Enraf RTG.</td>
<td>Mohamed is a Control Systems Engineer who joined Saudi Aramco in 2011. He is a certified Automation professional (ISA-CAP) graduated from Alexandria University, Faculty of Electrical Engineering and have worked in many international Automation projects.</td>
</tr>
<tr>
<td>Saudi Aramco</td>
<td>Saudi</td>
<td>Saud Al-Fozan</td>
<td>Cyber-Security, Protecting Your Domain
Nowadays, Cyber-Security risk mitigation is a must for every facility utilizing a computer-based control system. The presentation will shed light on the essential requirements to protect the Process Automation Networks (PAN) Domain. It will also highlight the most important activities that must be conducted periodically to ensure protection of the PAN Domain.</td>
<td>Saud is a DCS engineer with over 13 years of experience in process control systems and networks. He holds a BS degree in Systems Engineering from King Fahad University of Petroleum and Minerals.</td>
</tr>
<tr>
<td>DSM</td>
<td>Netherlands</td>
<td>Jan van den Eijnden</td>
<td>APC (Advanced Process Control) in a Honeywell Controller
Advanced process control is often believed to be reserved for expensive specific control applications. An example describes how APC can be achieved with a Honeywell controller. It concerns controlling the temperature of an exothermal batch reaction process. This temperature process is very hard to control with standard PID control; advanced process control is needed for an accurate stable temperature profile. A GMC (General Model Controller) is realized using an internal process model and a PID controller. A non-linear estimator is used to estimate the reaction heat of the process, which is needed for the GMC. Some extra specific features are used to optimize</td>
<td>Jan obtained Bachelor degrees in electronics in 1978 and in measurement and control engineering in 1989. He has 25 years of experience in laboratory and mini-plant automation engineering at DSM in the Netherlands. In 2014 he obtained a Master’s degree in Control System Engineering at HAN University.</td>
</tr>
</tbody>
</table>

*abstracts and presenters can be subject to change
<table>
<thead>
<tr>
<th>Company</th>
<th>Country</th>
<th>Name of presenter</th>
<th>Title and abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saudi Aramco, Yanbu Refinery</td>
<td>Saudi</td>
<td>Rakan Mohammed Binthman</td>
<td>Boiler Load Optimization via Improved LP Steam Header Pressure Control (1st abstract)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Part of low pressure steam control is the control of MP steam header pressure control. This consists of 2 controllers: a make-up controller to control the MP steam make-up valve, and a split range controller to control let-down and vent valves. An opportunity was noticed to improve the response of these controllers as the make-up is frequently opening when the let-down is open, which increases boiler load unnecessarily. To achieve optimal behavior, the dynamic interaction between the two controllers is analyzed through modeling and simulation using TaiJi PID software. Appropriate tuning parameters were developed to minimize controllers' interactions with load changes. New tuning parameters along with new tuning configurations led to different sets of tuning. This improved controller response to load changes and reduced unnecessary make-up valve opening by allowing the let-down valve to close to control LP steam header pressure in case of lower header pressure. Benefits include a reduction in boiler load of 2 ton/hr and a reduction of 200 nm3/hr of fuel gas, equivalent to 5.355 mmbtu/hr or 0.26 MM$/year.</td>
</tr>
</tbody>
</table>

*abstracts and presenters can be subject to change
<table>
<thead>
<tr>
<th>Company</th>
<th>Country</th>
<th>Name of presenter</th>
<th>Title and abstract</th>
<th>Bio of presenter</th>
</tr>
</thead>
</table>
| Oman Oil Refinery and Petroleum Industrial Company (ORPIC) | Oman | Alia Al Balushi | **Implementation of Honeywell RMPCT on Aromatics Plant at ORPIC**
ORPIC decided to implement advanced process control for the refinery and aromatics plant at Sohar, Oman. Honeywell was chosen to implement their RMPCT on the aromatics plant, the crude unit and the RFCCU plant. The baseline study was conducted and a total payback of four months was projected for the aromatics plant. ORPIC and Honeywell teams worked together and completed the implementation. The project was successful; the post-audit benefit was found to exceed the baseline study. Smooth co-ordination and good understanding between the Honeywell and ORPIC teams were key factors in the success of the project. In the next phase, ORPIC is implementing APC on CDU and RFCCU. | Alia is team leader for process optimization at ORPIC. She is responsible to roll out efficiency improvement projects for ORPIC’s refineries, aromatics and polypropylene plants. |
| Salalah Methanol Company (SMC) | Oman | Asish Thampi | **Implementation of Honeywell’s Advanced Alarm Management System at SMC**
SMC rolled out an initiative of implementing an advanced alarm management system for their methanol plant at Salalah, Oman. Honeywell was chosen due to the superior integration capability of the Experion PKS DCS. The project went through different phases, including a baseline study, rationalization workshops, system implementation and commissioning. Domain expertise from SMC, together with Honeywell’s experience of leading and executing alarm management projects, was a key success factor for this project. Technologies such as ACM, UA and AEA, plus rationalization workshops, allowed KPIs to be achieved such as bringing down the peak alarm rates and standing alarms per 10 minutes. Rationalization work is still in progress and SMC has created a cross-functional team that meets monthly to identify and address bad actors. | Asish is Senior DCS Engineer at SMC and the single point of contact for Honeywell. His KPI is to maintain the DCS and related infrastructure in good health. He is also responsible to roll out key initiatives like alarm rationalization and plant information systems. |
<table>
<thead>
<tr>
<th>Company</th>
<th>Country</th>
<th>Name of presenter</th>
<th>Title and abstract</th>
</tr>
</thead>
</table>
| OOO Lukoil Nizhegorodnftorgsyntez | Russia | Dr. Viacheslav I. Kuvykin | **Analytical Planning System**
This presentation considers the organization of a refinery planning system, and in particular Honeywell’s RPMS. It investigates the problems of the LP program and structural instability of a refinery model. The system includes linear programming integrated with the ERP system, Production Balance (Honeywell), Advanced Process Control (Honeywell), automation blenders (Honeywell), online analyzers, and scheduling software in the analytical planning system. Calculations of the estimations of the economic effects are also provided. |
| Al Hosn Gas | UAE | Baskar Goundar | **Integrated MAC Implementation at Al Hosn Gas**
Al Hosn Gas is a joint venture between Abu Dhabi National Oil Company (ADNOC) and Occidental Petroleum (Oxy). The company is in the process of developing sour gas reservoirs, associated processing facilities and transport pipe lines located in the Shah Field onshore of Abu Dhabi, UAE. The large Al Hosn Gas Shah Gas Development (SGD) project required eight separate EPC packages, bringing complication into the project execution requirements to mitigate risk, ensure the project schedule, and ensure the protection of employees and the environment. During the FEED stage, Honeywell was appointed Main Automation Contractor (MAC) to supply the Integrated Control System consisting of DCS, ESD & FGS, along with the entire suite of Operations applications covering Operator |

*abstracts and presenters can be subject to change
Training Simulation, Operations Reporting, Alarm Management, Data Historian, Advanced Process Control, One Wireless and the Laboratory Information Management System together with numerous sub-systems. The decision was made to drive operations reliability and efficiency having one Integrated Main Automation Contractor (I-MAC) deliver the fully integrated solution. This presentation covers the experience and knowledge gained from this I-MAC approach, and shares the project methodology, key challenges and lessons learnt.

Repsol Spain Jorge López Rey
Energy Optimization With Advanced Energy Solutions

The Repsol Refinery at La Coruña in Spain has 3 conventional boilers and 2 cogeneration plants for steam and electricity supply. Steam production equals refinery demand. However, electricity is produced not only to satisfy refinery demand but also to be sold to the grid. Market prices change hourly; according to these, the electricity supply schedule is settled. Steam and electricity production plants may not all be working at the same time, depending on the steam demand and the electricity and steam prices. This presentation describes the control and optimization of this production network, using Advanced Energy Solutions (AES) from Honeywell. Implementation was carried out in three phases due to changes in the regulatory and market conditions for electricity production that led to different optimum production schemes. AES optimizes the whole system, from a single boiler (combustion optimization) to the overall steam network. It is based on empirical and theoretical models.

Jorge has worked for Repsol in La Coruña Refinery in Spain since 2006. Initially he held roles in operations supervision and process engineering support for the cogeneration and utilities plants. Since 2012 he works as an advanced control engineer for the coker, cogeneration and utilities plants. Jorge holds a degree in Chemical Engineering from the University of Santiago de Compostela in Spain.
Marathon Oil | UK | Paul Stewart | Distributed Control System Contribution to Functional Safety
This presentation examines the role of Distributed Control Systems in relation to the functional safety of process plants. Following the introduction of the functional safety standard for the process industries, IEC 61511, in 2003, there have been significant advances in the assessment and management of electrical, electronic, and programmable electronic systems used in safety applications. During functional safety assessments, risk reduction credit is often taken for Distributed Control Systems as an independent layer of protection. IEC 61511 requires any credit taken to be determined based on the reliability, performance data, and procedures that are in place.

The main aim of this presentation is to provide guidance in determining a suitable level of risk reduction credit to be taken for Distributed Control Systems during functional safety assessments. Various methods of determining the failure rates for equipment are assessed; including, prior use data, industry wide reliability data, and data synthesis. A methodology for modelling the representative distribution of risk reduction credit is proposed, taking into account both probabilistic and systematic failures. The proposed methodology provides the reader with a process for assessing Distributed Control System contribution to functional safety and complying with the requirements of IEC 61511.

Paul has 22 years’ experience in the Oil and Gas Industry, and has worked for Marathon Oil in Aberdeen for the last 10 years, in both operational support and project engineering roles. In his current role, Paul is the Instrumentation and Control Systems Technical Authority for Marathon’s UK Offshore assets. Paul has a B.Eng in Electrical and Electronic Systems from the Robert Gordon University in Aberdeen.
<table>
<thead>
<tr>
<th>Company</th>
<th>Country</th>
<th>Name of presenter</th>
<th>Title and abstract</th>
<th>Bio of presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA</td>
<td>Croatia</td>
<td>Boris Žeželj</td>
<td>Alarm Management Pilot Project at Rijeka Oil Refinery
The establishment of an alarm management and control loop performance monitoring system is necessary as the poor state of control loops has a huge impact on the appearance of a large number of process alarms. This was the main driver for the launch of a 3-month integrated pilot project to test the functionality of an alarm management system, conducted at the Rijeka oil refinery together with Honeywell. Throughout the pilot project, much valuable information was collected about the state of the alarms and control loops at the FCC complex. Alarm management system functionality was proven and the decision was taken to implement it in all process plants within the refinery. It included alarm philosophy documentation preparation and alarm rationalization services to meet international standards such as EEMUA 191 and ISA 18.2.</td>
<td>Boris has over 20 years’ experience in the Rijeka oil refinery in instrumentation, control systems and network technologies. He has an IT Expert Specialist degree from the Polytechnic of Rijeka.</td>
</tr>
<tr>
<td>Sonatrach</td>
<td>Algeria</td>
<td>Bachir Benasla</td>
<td>Development of Smart Monitoring and Troubleshooting Aid Application for a Gas Turbine Generator under Experion PKS
Arzew Refinery has a new GE 27 MW gas turbine generator. The associated control and safety systems are diverse and complex. Incorrect interpretation of data, events and alarms could lead to a false diagnosis and failure to take timely actions. Experion SCADA is an intuitive, scalable solution for the integration of third-party systems through Modbus TCP/IP. Experion Control Builder and HMI Web Display Builder are powerful software platforms that incorporate advanced applications for HMI and supervisory control. The refinery used these tools to develop a smart application with a real expert system to achieve these objectives: 1. Data, alarms and events supervision of the gas turbine from the Experion PKS operator station.</td>
<td>Bachir obtained a degree in electronics and process control engineering from Oran University of Sciences and Technology. Since 2003 he has worked as Instrumentation and DCS Engineer in Sonatrach’s Arzew Refinery. Since 2008 he is also Experion PKS Senior Trainer for Sonatrach.</td>
</tr>
</tbody>
</table>
Implementing Virtualization Solutions on TPS System

Challenges in the control system environment include:

- Reducing industrial network server hardware and Operating System changes.
- Improving computer platform resource utilization.
- Making the system easier to maintain.
- Improving availability, reliability and disaster recovery of industrial network servers and workstations.
- Facilitating the application of patches and network security updates.
- Improving training by implementing virtual offline process servers and workstations.

With virtualization, businesses can do all these and more. By implementing Honeywell's Virtualization Solution in our plant, a single secure blade server simultaneously runs multiple operating systems and applications, while insulating these virtual machines from the underlying hardware and from each other. This presentation focuses on the project implementation and cost optimization. It shows the different steps done to improve the implementation of the Virtualization Solution in an industrial control network of a TDC 3000 linked to

Amine is an instrument and control engineer at Sonatrach LNG 2 plant. He previously worked as instrument engineer in charge of instrument maintenance and calibration of a gas chromatography analyzer. He is currently responsible for TDC 3000 applications development in CL language, PHD system administration, and Triconex and Schneider PLC applications design. He has participated in many small and large projects and has experience in power generator speed control and steam turbine control. Amine has a diploma in electronic and control engineering from Oran University, Algeria.
<table>
<thead>
<tr>
<th>Company</th>
<th>Country</th>
<th>Name of presenter</th>
<th>Title and abstract</th>
<th>Bio of presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonatrach</td>
<td>Algeria</td>
<td>Mohamed Dahou</td>
<td>Implementation of a Tuning Package on TDC 3000</td>
<td>Mohamed graduated in 2003 in mechanical engineering from the University of Chief. In 2005 he took a Master's degree in gas engineering and LNG technology. In 2006, he was recruited as a process control engineer by Sonatrach. His roles are to diagnose and troubleshoot performance problems associated with process control loops, as well as database configuration and troubleshooting.</td>
</tr>
<tr>
<td>BASF</td>
<td>Germany</td>
<td>Michael Krauss</td>
<td>Automation Trends, Challenges and Innovations for Process Industries</td>
<td>Michael joined the Competence Center for Automation in BASF SE, Ludwigshafen, in 2010, after finishing his PhD in Theoretical Physics. Since 2013 he has led the field of DCS technology within the Competence Center, focusing on automation projects, standardization and acquisition processes for automation systems. In 2014 he became head of the NAMUR working division 2.1 for PLCs and DCSs.</td>
</tr>
</tbody>
</table>

an Experion PKS system. It highlights the net profit in hardware, server and network maintenance, and the ease of operator training.

Today’s industrial control loops are still of PID type. According to statistics, about 40% of industrial PID loops are poorly tuned, which greatly hinders the operation of production units. Optimization of PID parameters will improve these units and bring an important economic benefit in the long-term. Obviously, these loops require periodic monitoring as illustrated by the tuning operation. This suggestion led to the implementation of a tuning package on the DCS by using the picture editor along with the CL program. This package is considered as an interface for tuning regulators. The proposed interface ensures an auto-tuning operation and makes it much easier. It will also ensure the link between regulator parameters such as SP, PV, and OP, the function mode, and the tuning parameters (PID).
<table>
<thead>
<tr>
<th>Company</th>
<th>Country</th>
<th>Name of presenter</th>
<th>Title and abstract</th>
<th>Bio of presenter</th>
</tr>
</thead>
</table>
| Grupa Lotos | Poland | Mariusz Zienkiewicz | From FSC to Safety Manager This presentation will cover the revamp of the first FSC controller (from 1996) to the latest FSC Blue controller, plus the long-term evaluation of maintenance efforts for FSC and Safety Manager controllers. Topics covered include:
 - The first, TUV approved, interlock system for Lube Oil Block (1996)
 - Integration with the existing DCS: TDC 3000
 - Why change to a new FSC controller after 17 years?
 - Implementation and problems encountered
 - Change from Hiway-based communication with DCS to integrated UCN communication
 - Problems and highlights of first FSC interlock system over 17 years of continuous operation
 - Summary and comparison of real experience with 18 FSC systems and 12 Safety Manager systems in Grupa Lotos Refinery. | Mariusz is maintenance support manager for DCS and ESD systems at the Grupa Lotos refinery in Gdansk, Poland, where he has worked since 1983. His team is responsible for DCS and ESD system engineering and application engineering. He has an extensive background in automation, control systems and ESD systems. Recently his team has implemented 10 Safety Managers and 8 C300 controllers plus all Experion operator graphics for 10+ big investment programs of Grupa Lotos, several TPS HPM controllers, and 3 new FSC Blue controllers. |
| BASF | Germany | Frank Lerch | Alarm Reduction with BASF Alarm Philosophy after Plant Clustering The presentation will show how to realize alarm philosophy with Honeywell Products Base:
After clustering two plants, with two Honeywell TDC3000 Systems, also two different ways for alarm management moved into the new control room. One plant showed 95% LOW alarms and the other plant showed 95% HIGH alarms.
Project “BASF alarm philosophy”
a) Rearrange and reduce the alarms
- Alarm monitoring with Matrikon tools
- Export alarm priorities
- Rearrangement of all 12,000 alarm priorities
- Import alarm priorities
- Alarm monitoring with Matrikon tools after the change
- Analyzing, results | Frank started as a trainee at the BASF Ludwigshafen site in 1983. From 1987 to 1997 he supported the Agro Plant as an Asset Technician, before starting with HIMA PLC programming and his first steps with TDC2000. In 1997 a new Herbicide Plant Project started with the first TPS System at BASF and he was part of the DCS Engineering team. Since 2004 he leads the Honeywell and Invensys DCS Engineering Team. |
b) Find a way, to show operator a special BASF alarm in the Experion system
 - Using the User Alert Summary
 - Creating Flags with Alert Enable Option in C300
 Control Modules and take Peer Responder to get data from HPM.

Saudi Aramco | Saudi | Yufeng He

Saudi Aramco’s RNGL Corporate OTS
As part of Saudi Aramco’s Accelerated Transformation Program (ATP), there is a need to develop a strategy for talent development within the workforce. One of the key areas is the training of experienced and new employees to economically and safely operate the facilities. Saudi Aramco is currently taking delivery of 16 Refinery and NGL Operator Training Simulators (OTS) over the next year. Unlike traditional OTSs, these are based on central model servers rather than a local separate stand-alone system. Provided the trainees are connected to Saudi Aramco’s corporate computer network, they may download each OTS locally onto their PCs, from which structured training can be conducted. Each OTS is integrated with Saudi Aramco’s Learning Management System (LMS), where the trainee will be required to go through a series of predefined assessments and exercises. Each exercise score is uploaded to the LMS, which becomes the training record of the trainee. Like all complex OTS projects, there are many technical challenges faced by the project team. This presentation will conclude with an assessment of the challenges and whether a corporate OTS can be sustained in a constantly changing “IT” environment, without changes by the provider’s methodology.

Yufeng joined Saudi Aramco in 2012 as Engineer in the Process Modeling & Optimization Unit, Process and Control System Department. He holds a BSc degree in Chemistry from Peking University and a PhD in Chemical Engineering from Edinburgh University, UK. Before joining Saudi Aramco he worked with Honeywell Process Solutions on OTS projects between 2006 and 2012 in Bracknell UK.
Repsol Sines Portugal Portugal Joao Coelho

How to run a complex power house in the most optimum way

The integrated Repsol combined heat and power (CHP) station in Sines, Portugal, consist of three high pressure boilers (120 bar) and one medium pressure auxiliary boiler (46 bar). Together they are capable of producing approximately 600 tonnes of steam for electrical and heat generation, and the mechanical work necessary for this large chemical complex. The boilers can combust six fuels of varying quality and availability simultaneously. Steam is reduced and distributed through five steam headers within the side via pressure reducing desuperheating stations and a 35 MW back pressure turbine. A 23 MW condensing turbine offers Repsol the possibility to generate extra electrical power.

The site has three electrical contracts:

- A semi market mechanism for importing electrical energy related to the back pressure turbine and site consumption
- A market mechanism for exporting electrical energy related to the back pressure turbine and site consumption
- A contract up to 2015 for export of electrical power from the condensing turbine under the Portuguese CHP law.

Prices depend on the season, day, time and holidays. The first contract is calculated by reference to 15-minute periods; the last on one-hour periods and varies according to the time and month, but also the amount of power generation each month and the power quality.

Given this complexity and the difficult economic environment, operations staff cannot make the best decisions to maximize profits unaided. The site therefore installed a thermodynamic and economic model using mixed integer non linear programming to provide

Currently João is Power Plant & Utilities Plant Manager at Repsol Petrochemical Complex in Sines, Portugal. He has been working with Repsol since December 2004. Prior to his current position, from November 2007 to January 2013 João developed process functions as Advanced Control and Systems Coordinator. Before joining Repsol he worked with Borealis as a process specialist in the area of Power Plant & Utilities. João is a Mechanical/Thermodynamic Engineer with a Thermodynamic Master degree from Coimbra Science University.
<table>
<thead>
<tr>
<th>Company</th>
<th>Country</th>
<th>Name of presenter</th>
<th>Title and abstract</th>
<th>Bio of presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qatar Steel Co. (Q.S.C)</td>
<td>Qatar</td>
<td>Khalid Saber El-Maksoud</td>
<td>From a Third Party DCS to Experion® Implementation</td>
<td>Khalid has been with Qatar Steel for nearly 20 years. He is responsible for Electrical and Instrumentation in the Maintenance Dept. He has a wealth of engineering experience and process knowledge that he can call upon, having held various positions in the course of his career within the steel industry.</td>
</tr>
</tbody>
</table>

Qatar Steel is widely recognized as one of the leading steel producers in the Middle East. With growing demand for steel in the region it has set out to increase its production capacity supported by a program of ongoing modernization and technically advanced expansion projects designed to produce world-class products that will further enhance the company’s presence in steel production.

The plant is a Direct Reduction (DR) facility. It includes a Midrex process based DRI/HBI Combo Mega Module, Electric Arc Furnaces with a Ladle Refining Furnace, a Continuous Casting plant and Rolling Mills with the latest automated features. As part of the modernization program, Honeywell was selected to replace the obsolete Siemens Teleperm ME system with Experion® PKS. This presentation covers the implementation steps that led to an early start-up despite the constraint of a short shutdown window of 21 days, starting from removing the old panels to final commissioning, new wiring and signals verification. It describes the success factors such as in-depth study, good preparation and teamwork between Qatar Steel and Honeywell, and covers the benefits realized by Qatar Steel including lower cost of ownership.
<table>
<thead>
<tr>
<th>Company</th>
<th>Country</th>
<th>Name of presenter</th>
<th>Title and abstract</th>
<th>Bio of presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qatar Fuel Additives Company (QAFAC)</td>
<td>Qatar</td>
<td>Abdulaziz Al-Ali</td>
<td>Migrating to Experion® PKS at Qatar Fuel Additives Company (Qafac) is a strategic component of the in-country diversification of its petrochemical base and downstream industries. Qafac has facilities located at Masaied Industrial City, Qatar where it produces methanol and methyl tertiary butyl ether (MTBE) – a key gasoline additive replacing lead and reducing exhaust emissions. As part of its ongoing commitment to reduce the impact on the environment, Qafac has commissioned a carbon dioxide recovery (CDR) project to capture greenhouse gases for re-injection into the production cycle. Qafac undertook to replace the ageing legacy DCS with Experion® PKS, a new fire & gas system and the refurbishment of the control room. This scope covers the production units, the new CDR and boiler. The Honeywell Experion solution includes Universal I/O and C300/Safety Manager integration. The presentation describes what drove the decision to replace the previously installed system, the expected benefits which include increased cyber security and...</td>
<td>Danny has 11 years' experience with ExxonMobil as an employee. After a 5-year career as IT project manager in the Breda office, it was time for a change of scenery and he moved to the Brussels office, where he was offered a job as auditor. After traveling around for 3 years and auditing various ExxonMobil affiliates and joint ventures, he earned his spot as supervisor of the Antwerp site training group. In July 2014 he was offered the job of Process Control Systems supervisor at the Antwerp refinery. Danny holds a degree in computer science from the University of Antwerp.</td>
</tr>
<tr>
<td>Esso Belgium, division of ExxonMobil Petroleum & Chemical B.V.B.A.</td>
<td>Belgium</td>
<td>Danny De Moor</td>
<td>BMA for Oil Movement The Esso Refinery in Antwerp, Belgium is part of the ExxonMobil network, and relies extensively on business automation. As expected, the automation is an enabler for high efficiency with, for example, orders being processed from order-taking to customer delivery without manual operator intervention. Besides efficiency, the automation is also driving the effectiveness, with top reliability through flawless operations, e.g. automated path selection (efficiency and reliability have been confirmed by Solomon). The presentation will highlight the impact of the Process Control platform on both dimensions, with the example of BMA for Oil Movement.</td>
<td></td>
</tr>
<tr>
<td>Company</td>
<td>Country</td>
<td>Name of presenter</td>
<td>Title and abstract</td>
<td>Bio of presenter</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| PETROTEL-LUKOIL S.A. | Romania | Mikhail Petukhov | Honeywell's applications to optimize a refinery’s material balance & performance department
This paper considers the Honeywell applications used at the PETROTEL-LUKOIL S.A. refinery to improve the business process of material balance construction and production performance. It demonstrates the key features of implementation of Honeywell’s applications to optimize the staff in the material balance & performance department, and highlights the results achieved. | Mikhail is head of the production planning and material balance department at PETROTEL-LUKOIL S.A. refinery, Romania. His is also responsible for APS & MES implementation. Mikhail has a PhD in Physics & Mathematics. |

operator effectiveness, and the steps to implement the Experion solution. The project commenced in June 2013 and was completed in July 2014.

*abstracts and presenters can be subject to change