Advanced Control of the TMP Mainline Refiner System

Leigh Windsor, M. Eng
Operations Specialist
NorskeCanada, Elk Falls Division
Overview

• Mill description
• Process analysis
• Control problem definition
• The control solution
• Implementation results
• Benefits
TMP Plant – Elk Falls

• Plant description
 – 1600 adm/day TMP plant
 – TMP I – 3 RLP 54/58 refiner lines
 – TMP III – 4 RLP CD70 refiner lines
 • Produces 80% of total pulp production

• Manual control challenges
 – Based on grab samples (infrequent)
 – TMP I and TMP III each have a single latency chest
Advanced Control of the TMP Mainline Refiner System

Process Schematic

- Screw speed controller
- Flow controller
- Plate gap controller
- Motor load indicator
- Consistency indicator
- Pulp quality monitor

Presteamer
Dilution water
Motor
Blow-line
Cyclone

Latency chest

PQM - pulp quality monitor
Paper Machine Requirements

- **Reduce kraft consumption**
 - Competitive edge required in the current market

- **Improved paper machine runnability**
 - Reduce paper breaks
 - Increase paper machine efficiency

Consistent TMP Pulp Quality
Impact of TMP Pulp

- Analysis of TMP pulp quality
 - CSF, MFL, Shives
 - Impact on hand sheet properties
- Significant pulp quality variability
 - Analysis was useful but not conclusive

Needed to reduce TMP pulp quality variability
TMP III – Process Analysis

- **Motor load variations**
 - Affected by chip bulk density variations

- **Blow-line consistency variations**
 - Implies uneven refining intensity
 - Manual control based on grab samples

- **Pulp quality variations**
 - Affected by all process variables
Advanced Control of the TMP Mainline Refiner System

Process Dynamics

Feed Screw Speed

Dilution Flow

Plate Gap

Motor Load

Blow-line Consistency

Pulp Quality
Control Problem Definition

- Control refiner motor load
 - Avoid load excursions
- Control blow-line consistency
 - Regulate refining intensity
- Control final pulp quality
 - Define a quality window (CSF, MFL)
- Coordinate multiple refiner lines
The Control Solution

• Development
 – NorskeCanada-Elk Falls & Honeywell joint project

• Controller design
 – Constrained model based control (MPC)
 – Ability to define low and high limits on all variables
 – Ability to define a pulp quality window
 – Accommodates multiple refiner lines
 – Robust MPC Design
 • Insensitive to plate wear
Advanced Control of the TMP Mainline Refiner System

Control Strategy

Diagram of control strategy with various inputs and outputs:
- PR Screw Speed
- PR Dilution Flow rate
- PR Plate Gap
- SR Dilution Flowrate
- SR Plate Gap
- PR Motor Load
- PR Consistency
- SR Motor Load
- SR Consistency
- Quality Controller
- Stabilization Controller
- Optimizer

Diagram connections and data flow indicate the control strategy for the TMP Mainline Refiner System.
Open Application Architecture

- Mill Information Network
 - Router or Hub
- Process Information Network
 - Application Node
 - Profit Studio
 - Historian
- Operator Interface
- Process Control Network
 - Process I/O
- Process Information Network
 - Operator Interface
Advanced Control of the TMP Mainline Refiner System

Refiner Line Control Results

![Chart showing time (days) on the x-axis and motor load (MW) and blow-line consistency (%) on the y-axis. The chart compares Primary motor load, Secondary motor load, Primary consistency, and Secondary consistency before and after a certain point in time.](chart.png)
Quality Control Results

![Graph showing quality control results for PQM Freeness (mL) vs. PQM Fiber Length (mm). The graph compares data before and after quality control, with distinct markers for each condition.](image)
Benefits

- Tight regulation of refiner operations
 - Motor load and blow-line consistency
- Improved pulp quality
- Ability to define a pulp quality window
 - Window set to optimize paper machine operations
- Reduced specific energy
- Reduced kraft consumption
Benefits Sustainability

- Average life of APC is about 6 months
 - Lack of operator training
 - Lack of process model update as major physical changes are introduced
 - Lower level regulatory control loop performance deteriorates
Benefits Sustainability - 2

• NorskeCanada - Elk Falls solution to sustainability
 – Each crew was fully trained (hands-on and classroom)
 – Lead operator was assigned to the project
 – Offline TMP simulation package was supplied by Honeywell (Profit Studio)
 – Honeywell Advanced TMP Control course (Vancouver)
 – Automated loop performance assessment – Loop Scout analysis
Conclusions

- Advanced control strategy was successfully implemented in TMP III
- Refiner operation was stabilized
- Pulp quality was improved and variability of quality was reduced
- Significant benefits are being realized
Acknowledgements

- Rick Van Fleet (Honeywell) for initiating the project
- Manny Sidhu (Honeywell) for controller design and implementation
- Dwight Anderson, Carl Hanson for tremendous instrumentation and controls support
- Bert Weger for technical and implementation support