Honeywell’s Open Blend Property Control (OpenBPC) is designed specifically for on-line blend reformulation and optimization. It controls and optimizes the operation of in-line blenders which produce a wide variety of products such as gasoline, distillate and fuel oils. OpenBPC can also be applied to crude oil or chemical blending applications.

Benefits include:

- **Reduced property giveaway** through ensuring that all quality specifications are met, while minimizing property giveaway for selected properties.
- **Optimal component use** through use of an objective function that minimizes cost while meeting all quality requirements.
- **Lower product inventory** by reducing touch-ups and reblends, and supporting on-line blend certification.
- **Lower component Inventory** by supporting use of unit rundown streams and providing optimal component usage for property correction.
- **Lower number of touch-Ups and reblends** by ensuring that the blend is on-specification for all properties the first time.

Open Blend Property Control integrates with Honeywell’s Experion® Blend Controller or other in-line blend controllers.

Key Capabilities

Open Blend Property Control is part of Honeywell’s Blending Solution within the Blending and Movement Management portfolio. OpenBPC provides property control and optimization for in-line blending processes which add several streams together in a common header at a ratio specified by the blend recipe. OpenBPC provides the following key capabilities:

- Powerful Blend Optimization
- Flexible Blending Objectives & Control Modes
- Comprehensive Blend Optimization Model based on customer data and rules
- Blend Quality Monitoring
- Multi-Blender Optimization
- Support of Continuous Rundown Blends
- Flexible Reporting
- Offline Optimization
- OPC Compliancy and XML Support

These key capabilities are described below:
Powerful Blend Optimization

OpenBPC uses a powerful, state-of-the-art non-linear optimizer which executes at every control interval to adjust the blend recipe based on analyzer feedback. The problem statement for the optimizer is contained in the recipe information, which includes:

- Recipe target values for each component
- Component limits (percent/volume)
- Component weighting factors
- Property limits
- Property weighting factors
- Target blend flow and volume
- Component blend values (typically lab data)

Flexible Blending Objectives & Control Modes

Since the blending goal(s) can change from blend to blend depending on factors such as component availability, component and product value, equipment availability, etc., OpenBPC supports a number of blending objectives shown below. These blending objectives can also be combined in different combinations to ensure that the ultimate blending goal(s) can be achieved:

<table>
<thead>
<tr>
<th>Property Control</th>
<th>Minimize property off-specification deviation. An Off-Spec Ratio can be used to increase the cost of off-specification properties.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Cost</td>
<td>Minimize the cost of the blend based on component costs.</td>
</tr>
<tr>
<td>Minimum Giveaway</td>
<td>Minimize property deviation from the high or low specification limit, based on property costs.</td>
</tr>
<tr>
<td>Minimum Distance</td>
<td>Minimize deviation from the target recipe, or from high or low component limits.</td>
</tr>
</tbody>
</table>

OpenBPC blending objectives can be combined to achieve the ultimate blending goal(s).

In addition to these blending objectives, OpenBPC supports two blend modes:

- **Instantaneous Property Control** – Blend qualities are maintained as close to the specified value as possible without making off-specification product; typically used for blending to a pipeline or ship.

- **Tank Property Control** – Generally used if product is being blended to a tank, the basic goal in this mode is to create a blend tank full of product that is on-specification.

Comprehensive Blend Optimization Model

OpenBPC’s Blend Optimizer uses a model of the blending process to determine how to adjust the component feed recipes to meet the desired blending objectives. The blend model consists of a series of equations referred to as "blend laws" specified by the customer. Each blend law equation is used to estimate the value of a given property in the blended product, based on the fraction of each component being fed into the blender and the "blend value" for each component-property pair. In addition to the blend model, equipment constraints based on component flow limitations, and component constraints based on recipe limits, rate of change limits and component volume limits, ensure that the optimized recipe doesn’t violate flow controller limitations, or component recipe limitations. Finally, to ensure the blend model is as accurate as possible, model offsets are added to the blend model by comparing the model property estimates with analyzer readings.

Blend Quality Monitoring

OpenBPC continuously monitors the quality of the material in each piece of equipment in the OpenBPC blending area to ensure that the most accurate quality information is used for property control and optimization. The equipment material quality is calculated from the material quality in the connected streams such as the rundown stream for a source tank and the blender stream feeding a destination tank.

This stream quality data can come from one of six prioritized sources:

- Analyzers
- Lab Results
- Blending Instructions Quality (Note: Blending Instructions is the application that sends recipe information to OpenBPC)
- Tank Quality Data
- Manual Entries
- Model Estimate

Multi-Blender Optimization

OpenBPC supports large optimization problems such as the optimization of multiple, simultaneous, or interactive blenders with rundown streams. Blenders using shared components may
be jointly optimized. An example of a multi-blender configuration supported by OpenBPC is shown below.

Off-line Optimization

Blend recipes and blend instructions may be checked offline before the blend is actually started using the OpenBPC Offline Optimizer. The Offline Optimizer supports "What if" scenarios that may be used to:

- Check the feasibility of different blend operating scenarios based on existing operating and configuration data;
- Test blend property control tuning parameters;
- Test and make adjustments to blending instructions prior to their use in online OpenBPC. These updated blending instructions may be transferred back to the blending instructions database for use.

The Offline Optimizer uses a specialized Microsoft® Excel® workbook with an Excel add-in as the interface to the OpenBPC optimization engine.

OPC Compliancy and XML Support

OpenBPC operates in conjunction with any industry standard OPC compliant control system. OpenBPC interfaces to other third party applications, such as blend planning applications, via industry standard XML files. This minimizes or eliminates the need to modify an existing blend control system.

Integration with Honeywell Applications

OpenBPC is a key component of Honeywell’s Blending Solution, which is part of the Blending and Movement Management suite. Other components of Honeywell’s blending solution are:

- **BLEND** - Offline multi-period blend planning and event-based scheduling
- **Blending Instructions** - Interface for management and transfer blend recipes / instructions
- **Experion Ratio Controller (ERC)** - Basic ratio control of in-line blending.
- **Experion Blend Controller (EBC)** – Advanced ratio control of in-line blending.
- **Blend Performance Monitor** - Collect, store and manage blend performance metrics
- Together, these components form the Honeywell’s Blending solution, a set of integrated tools to deliver optimum in-line blending.
OpenBPC accepts recipes in XML file format from Honeywell’s BLEND multi-period blend planning and scheduling application leveraging the Blending Instructions application.

The Blending Instructions application is used to specify how a blending operation is to proceed in the field. Each set of blending instructions contains data that uniquely describes a blend and its associated property model. Blending Instructions provides facilities for creating, editing, copying and deleting blending instructions that are, in turn, used by OpenBPC users to define blending operation requirements and ensure that the settings match the physical blending process in the field. These facilities may also be used to define blending operation requirements for field personnel.

Honeywell’s Experion Blend Controller (EBC) provides advanced ratio control of in-line blending in Experion PKS control systems. While OpenBPC can integrate with other ratio control applications, when used with EBC, there is additional integration provided that enables control of the OpenBPC application and monitoring of key OpenBPC information from the EBC operator displays.

Honeywell’s Experion Ratio Controller (ERC) provides basic ratio control of in-line blending in Experion PKS control systems, and currently does not integrate with OpenBPC for property control and optimization.

OpenBPC blend data is collected, along with data from other sources, by Honeywell’s Blend Performance Monitor application, where actual blend data is compared to planned performance. OpenBPC blend data is integrated into a data historian, such as Uniformance PHD, via the Blend Performance Monitor application for blend reports and archiving.
System Requirements and Architecture

OpenBPC is designed to operate within the Experion PKS environment or with Legacy and 3rd Party systems. The following illustrations show the hardware architecture recommendations for both of these architectures. Contact Honeywell for the latest list of supported Experion PKS releases.

OpenBPC runs in its own server that uses Windows Server 2003 Standard Edition (32-bit) with SP2, Windows Server 2008 Standard Edition (32-bit) with SP2, or Microsoft Windows Server 2008 R2 Standard Edition (64-bit) with SP1 depending on the version of Experion or other control system supported. The OpenBPC server typically requires Intel Xeon E5620 2.4 GHz Quad-Core or faster processors, with at least 4GB RAM and minimum 146 GB hard disk space. For specific Honeywell computer platforms and supported software that meet these requirements, please contact your Honeywell representative.

Training Services

Training courses addressing OpenBPC implementation, use and maintenance are available through Honeywell’s Automation College (www.automationcollege.com). On-site courses are also offered upon request.

Experion®, Business Flex®, and Profit® are registered trademarks, and Profit Suite is a trademark of Honeywell International Inc.

Microsoft® and Excel® are registered trademarks of Microsoft Corporation in the United States and other countries.

For More Information

Learn more about how Honeywell’s OpenBPC can optimize your blending process. Visit our website www.honeywellprocess.com/software or contact your Honeywell account manager.

Honeywell Process Solutions

Honeywell
1250 West Sam Houston Parkway South
Houston, TX 77042

Honeywell House, Arlington Business Park
Bracknell, Berkshire, England RG12 1EB UK

Shanghai City Centre, 100 Junyi Road
Shanghai, China 20051

www.honeywellprocess.com