Accurate analytical measurement and control of the water treatment process in power utilities can ensure optimum boiler feedwater quality resulting in savings on chemical reagent costs and greatly reduced costly boiler pipework corrosion.

Process Overview:

Make - Up Water Treatment Stages:

Power plants that burn fossil fuels or produce nuclear reactions for the generation of electricity require almost 560 billion liters of water per day for steam production and cooling purposes. In order to keep these plants as efficient as possible, the quality of the water is vital.

Ultra-high-purity water is required for makeup in high pressure steamgenerating systems. However, relatively high concentrations of impurities can be tolerated in makeup water for open recirculating cooling systems. These plants require a constant intake of water to replace water lost through sampling systems, steam losses, evaporation from cooling, and blowdown.

- Since there is a constant loss of cycle water for one reason or another, it is always necessary to have a continual source of incoming water.
- Treating this water is the beginning of the power plant’s cycle chemistry.
- Makeup treatment almost always consists of demineralization to remove dissolved impurities.
- Other pretreatment equipment consists of softeners, clarifiers, and filters.
- On an increasing basis, membrane technology is being used along with ion exchangers for effective demineralization treatment.
- The overall goal of the demineralization treatment is to yield high purity water for use in the overall feedwater/condensate cycle.
Problem: Treatment Plant Efficiency

Sources of water can vary from the local water authority to a local river to a nearby ocean. Each water source has unique characteristics, including organic growth, dissolved minerals, and chemical contaminants. Each of these inherent characteristics/contaminants can cause difficulties in a power plant.

The water must be treated to minimize potential problems, since these problems often result in either reduction of plant efficiency or large capital costs. Of the characteristics and contaminants, the difficulties that they can cause, and the means of treatment for each type. The process of preparing water for use by a plant is known as "makeup water treatment."

Analytical measurements such as Conductivity, ORP, sodium ion, and pH play an important part in ensuring that the various components necessary for water purification are operating at maximum efficiency at all times.

Typically the following measurements are carried out in the Make Up Water treatment and Pre-treatment stages:

- Electrolytic Conductivity
  - Cation and Anion Neutralization.
  - Ion Exchanger Efficiency.
  - Reverse Osmosis Plant Efficiency.
  - Total Dissolved Solids.
- pH
  - Neutralization of Excessive Acidity or Alkalinity.
- Redox / ORP
  - Control of Water Treatment Chlorine / Bromines.
**Risks:**

The major risks to process operational performance are:

- Corrosion and Scaling of boiler pipework and associated components leading to costly unscheduled outage.

- Excessive and costly use of chemical dosing reagents due to poor water treatment control.

- Inefficient Operation of ion exchange and RO filtration systems resulting in poor feed water quality and costly exchanger re-generation.

**Description of the solution:**

Liquid Analysis instrumentation is located in Ion Exchange, Reverse Osmosis, Acid and Base water treatment systems.

Conductivity is always monitored continuously as well as pH, ORP and Sodium Ion depending upon the components in the make up water.

Cation conductivity is measured in the makeup water storage tank to ensure water integrity. Typically this water is at a minimum of 1 Megohm-cm of resistivity (1 microsiemen/cm conductivity); with usual limits being 5 to 10 Megohms-cm resistivity.

ORP may be monitored if some form of chlorination/de-chlorination exists, whether as a monitor of incoming water or as a controlled parameter to protect some types of reverse osmosis or deionization resins.

Specific and Cation conductivity is typically measured in various places to determine efficiency of ion exchangers, softeners, and reverse osmosis systems.

pH or conductivity may be measured as part of the ion exchange regeneration cycle.

Honeywell’s UDA2182 dual input analyzer will accept combinations of measuring electrode inputs, and complimented by field proven Conductivity cells provides the optimal solution to Feedwater measurement needs.

Durafet II and Durafet III non – glass pH electrodes offer a fast responding, rugged solution for accurate pH measurement in Acid / Base neutralization.
Benefits:

Honeywell Smart Sensor Analytical technology:

Ensures accurate, repeatable pH, Redox/ORP, Conductivity measurements resulting in:

- Cost savings through accurate control of chemicals used in water conditioning.
- Timely re-generation of Ion exchange beds and RO filtration resulting in savings on chemical costs and good quality Feedwater stock.
- Less risk of boiler feed pipework and mechanical parts becoming subject to corrosion damage leading to high replacement costs and lost power generation.
- Reduced analytical inventory with UDA 2182 analyzer – no requirement to hold different analyzers “in House”

More Information

For more information on Power Plant Feedwater Treatment, visit www.honeywellprocess.com, or contact your Honeywell account manager.

Automation & Control Solutions

Process Solutions
Honeywell

1250 West Sam Houston Parkway South
Houston, TX 77042

Lovelace Road, Southern Industrial Estate
Bracknell, Berkshire, England RG12 8WD

Shanghai City Centre, 100 Junyi Road
Shanghai, China 20051