Engen Bulk Fuels
Supply & Distribution Optimisation

Delen Chetty
Zweli Hlatshwayo
Uberne Tapia

2012 Business Optimization Conference
Kuala Lumpur, Malaysia
Agenda

- Business Problems And Solution Objectives
- ENGEN Bulk Fuels Network Complexity
- The Need for Optimization
- RPMS Project Implementation Methodology
- The Final S&D Executable RPMS Model
- Benefits
- Next Steps
Business Problems and Solution Objectives

• Business Problems
 – Inability to manage ENGEN Supply Chain Network and Depot constraints adequately
 – Depot Supply Plan is manually balanced with no optimization
 – Inaccurate Supply & Demand Balance has potential for surplus/deficit stock fluctuations
 – No visibility of economically performing and non-performing depots
 – Operational scheduling system does not comprehend constraints of 2 way ENREF/IV transfers

• Business Solution Objectives
 – To provide a decision support tool for the STO / ESM / Supply Operations Department such that the Team can take effective “operational decisions” within the ENGEN Supply Chain Network to ensure optimal replenishment planning
 – “Operational decisions” include sourcing locations, imports, exports, supply replenishment plans, mode of transport mix planning as well as supply chain network constraint management
Agenda

• Business Problems And Solution Objectives

• **ENGEN Bulk Fuels Network Complexity**

• The Need for Optimization

• RPMS Project Implementation Methodology

• The Final S&D Executable RPMS Model

• Benefits

• Next Steps
ENGEN Bulk Fuels Network Complexities

• Terminals
 – Supply & Receiving Terminals
 – Supply Terminals
 – Receiving Terminals

• Mode of Transportations (MOTs)
 – Pipeline
 • ENREF – IV
 • DJP : IV - Pipeline Terminals
 • NMPP (New Multi-Product P/L) – Pipeline Terminals
 • Sasol Northern P/L – Sasolburg/Secunda to Pipeline Terminals incl. Oliver Tambo Intl Airport
 – Railcars
 – Road Tankers
 – 2 vessels

• Terminals Storage Infrastructure
 – ENREF & IV Storage
 – Tara Rail Facility
 – Wentworth Depot
 – Inland Region Depots
 – Costal Region Depots
Network Product Distribution Profile

- Diesel - 500ppm: 40%
- Diesel - 50ppm: 20%
- Illuminating Paraffin: 17%
- Jet: 7%
- Mogas LRP93 - 500ppm: 3%
- Mogas LRP95 - 500ppm: 3%
- Mogas ULP93 - 500ppm: 2%
- Mogas ULP95 - 500ppm: 3%
- Mogas 95: 2%
- Mogas 93: 3%
ENGGEN Supply Chain “Physical” Network

SUPPLY

Product Sources

T1 → T3

DEMAND

T2 → T3

T4 → T5

T6

T7

T

- Depot Terminals
Supply and Demand Balance - High Level Model Structure

SUPPLY

- Fixed Crude Rate & Mix
 - Enref Extreme Point
- Supply Contracts
 - PetroSA, Chevron, Sasol

Imports

DEMAND

- T1 → T3 → T5 → T7
- T2 → T4
- T6

- Exports
- ESM, IBD, AfricOil, Chevron

2012 Business Optimization Conference
IV and Enref Model (Bi-Directional Flow Modelling)

Mogas
- Import: 400m³/h = 9600 m³/d
- Export: 200m³/h = 4800 m³/d

Diesel
- Import: 400m³/h = 9600 m³/d
- Export: 200m³/h = 4800 m³/d

IV: Import
#E: Export
TPL (DJP + NMPP): Ship
ENGEN Physical Pipeline
Agenda

• Business Problems And Solution Objectives
• ENGEN Bulk Fuels Network Complexity

• The Need for Optimization

• RPMS Project Implementation Methodology
• The Final S&D Executable RPMS Model

• Benefits

• Next Steps
Why Do We Need an Optimization Model?

- To enable ENGEN to generate a best possible “optimal executable” Supply & Distribution plan considering the economics of the entire Bulk Fuels Supply Chain Network from Production to Primary / Secondary Distribution and that is feasible with respect to:
 - Production Facilities representation (e.g. ENREF, Sasol, Chevron & PetroSA) and Demands at Destination Terminals
 - Mode Of Transportation (MOT) constraints
 - Terminal Inventory constraints
 - Port constraints
 - Other network constraints (e.g. receiving terminal constraints)
Refinery and Petrochemical Modeling System - RPMS

- The RPMS Executable S&D Model Captures all the relevant synergies across the entire Supply & Distribution Chain
What Does RPMS Optimize?

Given:

- Economics and Volume data
 - Product demands and prices
 - Raw material availability and costs
 - Freight cost

- Network constraints
 - Pipeline flow restrictions
 - Tank capacities
 - Off Loading & Shipping Capacities
 - Size of batch MOT’s e.g. trucks, rail and ship
 - Voyage duration (e.g. Trip days)

- Sourcing
 - Production Facility
 - Supply Contract Tolerances
 - Imports, Spot Purchases

RPMS will simultaneously manipulate parameters in the model to determine the best optimal executable Depot Supply Plan.
Agenda

• Business Problems And Solution Objectives

• ENGEN Bulk Fuels Network Complexity

• The Need for Optimization

• **RPMS Project Implementation Methodology**

• The Final S&D Executable RPMS Model

• Benefits

• Next Steps
RPMS Project Implementation Methodology

• Phase I - RPMS Solution Blue Print

• Phase II - RPMS Solution Development

• Phase III – RPMS Solution Deployment
RPMS Project Implementation Methodology

PHASE 1 – Solution Blueprint
- Engen / Honeywell 3 Day Workshop
- Engen Brown Paper Model Development / Preliminary RPMS Model Development

PHASE 2 – Solution Development
- Preliminary RPMS Model Development (Offsite / Onsite)
- Model Validation (Onsite)
- Raw RPMS Model / Def.
- Manual population of model!

PHASE 3 – Solution Deployment
- Model Calibration & Commissioning (Onsite)
- Engen Model Testing and Usage (Engen Team)
- Engen Team
RPMS Solution Blue Print

- To work with the Customer ‘s resources to define & describe in a common data repository all the activities relevant to the Supply & Distribution Bulk Fuels Network that may have a “real impact” in the RPMS LP model
 - Terminals
 - Mode of Transportations
 - Inventory

- The RPMS Solution Blue Print contains the “Network Knowledge” used to built the RPMS model representative of the Bulk Fuels Network
RPMS Solution Blue Print : Terminal Alrode

General observations / Notes:
- Depot can receive a maximum of 6 x truck loads per day
- The MOGAS products supply from JP to AL (U5 & U3) are coming via SS
- The DL supply from JP to AL is coming via two routes : IV to JP & SS to JP

Supplies APO Locations:
Alrode : Selling point - demand will be placed at the level of Alrode
RPMS Model Development

• How should actual network activities be represented in the LP model?
 – Model structure must be sufficiently robust to generate a “good economic representation” over a practical range of operations
 – Model structure should be robust to accept changing supply and demand data without the necessity for lengthy restructuring or LP manipulation to get quick results

• All "real" network limitations should be modeled explicitly
 – Model it, if it has an impact, such as any operating characteristic limit

• Build the model to meet “business need only” and not to answer every single problem or issue in the network

• Decide upfront whether the model will be utilized for planning or execution decisions and then structure accordingly

• Start simple and add complexity later if needed and understand what you are doing
RPMS Model Calibration & Commissioning

• **Approach : Use Cases**
 – To determine whether the model behavior mimics as closely as possible potentially “extreme” but “real” supply chain disruptions
 – To determine whether the model will default to solutions that are quite similar to human interventions during supply chain disruptions

• **Objective**
 – The LP should perform with “logistic accuracy”
Agenda

• Business Problems And Solution Objectives

• ENGEN Bulk Fuels Network Complexity

• The Need for Optimization

• RPMS Project Implementation Methodology

• **The Final S&D Executable RPMS Model**

• Benefits

• Next Steps
High Level Model Overview

INPUTS
Supply & Demand figures are fixed or have changed due to unforeseen events

- **Demand Data**
 - AfricOil Demand
 - Trading Demand
 - IBD Demand
 - ESM Demand

- **Supply Data**
 - PetroSA
 - Chevron
 - Sasol
 - All Terminals
 - Enref Production

- **Other input data**
 - Product Slate Profile & Pricing
 - Supply Chain Cost
 - Imports / Exports by product
 - Inventory levels
 - Inventory targets

Operating Constraints:
- Depots receiving & shipping constraints
- MOT (Pipe, Rail, Road, Ship) availability & capacities incl. Product priorities
- Refinery + Other Oil Company Planned Shutdowns / slowdowns
- Inventory, etc

OUTPUT
Operational:
- Supply & Demand Balance by Depot by Product (Depot Supply Plan)

- Bulk fuels requirements

- RPMS Reports
Island View

<table>
<thead>
<tr>
<th>Product</th>
<th>Berg MB-IV</th>
<th>ER-IV JT&IK</th>
<th>ER-IV Mgs</th>
<th>ER-IV Dsl</th>
<th>Arab Gulf</th>
<th>MED</th>
<th>TOTAL SUPPLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>U5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>577</td>
</tr>
<tr>
<td>U3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,100</td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>336</td>
<td>1,595</td>
<td>2,573</td>
<td>1,689</td>
<td>221</td>
<td>6,434</td>
</tr>
</tbody>
</table>

Output – Depot Supply Plan
Agenda

• Business Problems And Solution Objectives
• ENGEN Bulk Fuels Network Complexity
• The Need for Optimization
• RPMS Project Implementation Methodology
• The Final S&D Executable RPMS Model
• **Benefits**
• Next Steps
Benefits

• Network Optimization
 – Optimal cost to serve
 – Realistic constraint based plans
 – Reduced stock outs
 – Reduced transshipping
 – Accurate Supply and Demand Balancing
 – Constraint identification and Management

• Develop Faster Executable Depot Supply Plans (DSP)
 – Refinery shutdown/slowdown scenario planning
 – Product phase out/in plans
 – Testing of Refinery Production profiles
 – Network Capacity Planning
 – Mode of Transport disruption scenario planning
 – Capability for extended use of model for Strategic/Tactical/Operational & Execution Planning
Benefits

• Business Collaboration
 – Scenario testing for ENGEM Divisions involved in Bulk Fuels
 – Potential to roll out LP models to wide user base
 – Single platform for agreeing a “single” plan
 – Buy-in from all Business Divisions

• Business Efficiency & Effectiveness
 – Can direct infrastructure planning to real supply chain constraints
 – Focus on optimizing “cost to serve” in bulk fuels network
 – Aligning of key business metrics to S&D LP model output
Agenda

• Business Problems And Solution Objectives
• ENGEN Bulk Fuels Network Complexity
• The Need for Optimization
• RPMS Project Implementation Methodology
• The Final S&D Executable RPMS Model
• Benefits
• Next Steps
Next Steps

• Business as Usual
 – Embed S&D LP Model usage in ENGEN Supply Team
 – Use of Back casting to focus business results improvements
 • Optimal cost to serve
 • Maximization of pipeline and coastal shipping MOT usage

• Further Model Development
 – Dedicated Coastal Shipping LP model or upgrade of current S&D LP model
 – Modeling of new multi-product pipeline in multi-product model
 – Modeling of Depot Shipping Out constraints
 – Modeling of downstream network
Next Steps

- RPMS Infrastructure, Training and Rollout
 - Continued Training efforts
 - Operations research with S&D LP model and RPMS in general
 - RPMS User base development
 - Roll out of 6 new standalone PC’s for RPMS S&D LP model usage in Cape Town office
 - Identification of key areas for S&D LP model usage as well as other dedicated models for continued business efficiency and effectiveness improvement