Optimization Solution White Paper

An Overview of Honeywell’s Layered Optimization Solution
Table of Contents

Table of Contents ...2

Table of Figures..3

Introduction ..4

Advanced Control and Real-Time Optimization ...4

Layered Optimization Solution ...5

Overview of Optimization Technologies...7

Optimization Solution Components..8

Unit optimization via Profit Controller...8

Multi-Unit Dynamic Optimization via Profit Optimizer ...9

Non-Linear Dynamic Optimization via Profit Bridge ...11

Converging on an Unconstrained Optimum...12

Non-Linear Steady-State Optimization Using ProfitMax ..14

Non-Linear Control Using Profit NLC...14

Recommended Optimization Approach and Benefits...15

Optimization Benefit Estimation ..15

Summary ..16
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced control and optimization layers</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Optimization configurations</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Layered optimization solution components</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Product Value Optimization within Profit Controller</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Comparison of dynamic and steady-state optimization</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Multiple unit optimization with Profit Optimizer</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Profit Bridge architecture</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Converging on an unconstrained optimum with gain updating</td>
<td>13</td>
</tr>
</tbody>
</table>
Introduction

Advanced Control and Real-Time Optimization

Advanced control and real-time optimization tools have become necessary technologies for today’s process operating companies to compete and maintain profitable operations. Honeywell has continuously demonstrated the benefits of advanced process control (APC) technology in improving profitability through improved process stability, increased throughput and yield, decreased operating costs, improved product quality, and increased operating flexibility. Another benefit of advanced process control is that APC forms the foundation for on-line optimization, which typically adds an additional 20 percent of the advanced control benefits with project paybacks often in less than six months. The following table shows typical APC and optimization benefits that Honeywell customers have experienced.

<table>
<thead>
<tr>
<th>Petrochemicals</th>
<th>Benefits (/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene</td>
<td>2-4% increase in production</td>
</tr>
<tr>
<td>VCM</td>
<td>3-5% increased capacity / 1-4% yield improvement</td>
</tr>
<tr>
<td>Aromatics (50KBPD)</td>
<td>3.4M - 5.3M US$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Benefits (/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>2-4% increased capacity / 2-5% less energy/ton</td>
</tr>
<tr>
<td>Polyolefins</td>
<td>2-5% increase in production/Up to 30% faster grade transition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oil & Gas</th>
<th>Benefits (/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream production</td>
<td>1-5% increase in production</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industrial Utilities</th>
<th>Benefits (/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cogeneration/Power Systems</td>
<td>2-5% decrease in operating costs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pulping</th>
<th>Benefits (/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleaching</td>
<td>10-20% reduction in chemical usage</td>
</tr>
<tr>
<td>TMP (Thermo Mechanical Pulping)</td>
<td>$1M-$2M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refining</th>
<th>Benefits ($/0.01/bbl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Distillation (150 KBPD)</td>
<td>5-13</td>
</tr>
<tr>
<td>Coking (40 KBPD)</td>
<td>15-33</td>
</tr>
<tr>
<td>Hydrocracking (70 KBPD)</td>
<td>13-30</td>
</tr>
<tr>
<td>Catalytic Cracking (50 KBPD)</td>
<td>13-30</td>
</tr>
<tr>
<td>Reforming (50 KBPD)</td>
<td>10-26</td>
</tr>
<tr>
<td>Alkylation (30 KBPD)</td>
<td>10-26</td>
</tr>
<tr>
<td>Isomerization (30 KBPD)</td>
<td>3-17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MMM</th>
<th>Benefits (/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina Refining</td>
<td>2-4% increase in production</td>
</tr>
<tr>
<td>Concentration</td>
<td>2-4% increase in production / 1-5% energy reduction / 1-4% recovery improvement</td>
</tr>
<tr>
<td>Smelting</td>
<td>2-4% loss reduction / Significant campaign life improvement</td>
</tr>
</tbody>
</table>
In the past, many companies underestimated the cost and complexity of implementing and maintaining real-time optimization systems. Traditionally, companies involved in optimization projects adopted a “top down” approach using detailed non-linear steady-state process models. These traditional, steady-state optimizers sent targets to multivariable controllers which drove the plant toward optimum operation. However, unless plant personnel were committed to understanding and maintaining such systems, most of these real-time optimization systems went out of service within the first year. Although there is a need for optimization based on detailed modeling in some cases, a large portion of the optimization problems in the process industries today can be addressed more directly with more leverage of plant data and less extensive, targeted modeling that focuses on key units that exhibit significant non-linearity.

Even so, detailed process modeling has proven invaluable to operating companies as a tool for process design, operator training, and operations planning, monitoring and optimization. Detailed modeling is essential for performing tests which are not feasible on the real plant. For example, a model may be used to evaluate different reactor catalysts or to evaluate a process retrofit. For use in on-line optimization, however, the trade-off between process benefit versus added cost and ongoing maintenance effort is very real and must be considered carefully. In many cases, a less extensive modeling approach may be used for on-line optimization because process measurements are available to correct for model inaccuracies on an ongoing basis.

The challenge for the process industries is to provide a level of optimization which realizes the best return on investment (ROI) for the customer. This ROI includes not only the cost of implementing a project and the expected optimization benefits, but also the cost of maintaining the system with the customer’s available resources.

To meet this challenge, Honeywell has developed a layered approach to optimization including:

- Controller-based optimization (Profit® Controller)
- Distributed dynamic optimization (Profit Optimizer)
- Non-linear gain updating (Profit Bridge)
- Traditional steady-state non-linear optimization (ProfitMax® Real-Time Optimization System)
- Dynamic non-linear optimization (Profit NLC)

Honeywell is well positioned to provide the level of optimization needed for a particular application, from robust multivariable control and dynamic optimization to detailed first-principles modeling and non-linear optimization. In addition, our process and optimization consultants can analyze the process to determine which technology is most appropriate.

This paper describes the components of our layered optimization solution, the advantages and benefits of this approach, as well as methods for determining optimization benefits of a particular application.

Layered Optimization Solution

As shown in the figure below, which indicates the various technologies within Honeywell’s Profit Suite™ technology, advanced control and optimization are dependent on other enabling technologies such as advanced regulatory control and inferential modeling tools. In addition, optimization occurs at a number of layers in the control and optimization hierarchy, from unit control and optimization to multi-unit optimization to plant-wide optimization. These layers represent increasing optimization scope.
Honeywell’s layered optimization solution also consists of different optimization technology layers, from linear dynamic optimization, to non-linear steady-state optimization, to non-linear dynamic optimization.

Honeywell’s optimization technology can be divided into four categories based on the use of linear versus non-linear models and performing dynamic versus steady-state optimization. These categories are presented in the table below together with the relevant Honeywell products.

<table>
<thead>
<tr>
<th>Optimization technology/model type</th>
<th>Use linear models</th>
<th>Use non-linear models</th>
<th>Optimization technology/model type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic optimization</td>
<td>Profit Optimizer</td>
<td>Profit NLC</td>
<td>Dynamic optimization</td>
</tr>
<tr>
<td></td>
<td>Profit Controller</td>
<td>Profit Bridge</td>
<td></td>
</tr>
<tr>
<td>Steady-state optimization</td>
<td></td>
<td>ProfitMax</td>
<td>Steady-state optimization</td>
</tr>
</tbody>
</table>
Overview of Optimization Technologies

Honeywell’s optimization technologies are often used in combination with our APC technologies, Profit Controller and Profit Optimizer. These advanced control technologies also contain embedded optimization to enable optimization and control to be performed simultaneously.

The advantage of a layered optimization strategy is that the appropriate combination of technologies can be selected to solve specific customers’ problems, rather than using the same technology for each problem. Figure 2 shows six optimization configurations that Honeywell has successfully implemented for customers.

![Figure 2: Optimization configurations](image)

The appropriate optimization solution for a specific customer’s application is based on the following criteria:

- **Expected ROI:**
 - Initial investment
 - Maintenance costs (e.g. rigorous models versus data models)
 - Potential benefits (e.g. tangible and intangible)
 - Complexity of solution (affects application uptime)
- **Process changes** (magnitude, frequency, type)
- **Process flexibility** (degrees of freedom to adapt to changes)
- **Level of customer technical expertise** (less expertise may require a less complex solution)
- **Implementation requirements**
- **Maintenance requirements**

The goal in selecting the appropriate optimization technology is to maximize the ROI and achieve an optimization solution that has sustained benefits over the long term with minimized lifecycle costs. Accounting for both the magnitude of potential benefits, as well as a customer’s ability to maintain the solution, ensure that the benefits are sustainable.
Optimization Solution Components

Briefly, Honeywell’s layered optimization solution includes the following technology components as shown in Figure 3.

![Layered optimization solution components](image)

Figure 3: Layered optimization solution components

Unit Optimization via Profit Controller

The first level of optimization available in Profit Suite is the Product Value Optimization (PVO) built directly into the Profit Controller, a robust multivariable controller using patented Robust Multivariable Predictive Control Technology (RMPCT). The PVO option of Profit Controller provides economic optimization for a process unit (or sub-unit) based on a quadratic (QP) objective function. The user specifies product values and associated production costs, which are then used to maximize the most valuable products, subject to unit constraints. The optimizer uses the controller’s dynamic process models and is fully integrated with the controller to provide dynamic optimization. Therefore, both the optimum steady-state solution and the best path to that optimum are calculated at each iteration as part of the optimization process. PVO is illustrated in Figure 4.

![Product Value Optimization within Profit Controller](image)

Figure 4: Product Value Optimization within Profit Controller

PVO is ideally suited for small-scale optimization problems that involve pushing unit constraints. In most process plants, distillation columns are ideal candidates for PVO. For large-scale optimization involving multiple units or highly non-linear or unconstrained optimum operations, PVO is elegantly integrated with Profit Optimizer and/or ProfitMax using external global optimum targets (ideal resting values), a feature inherent in its QP objective function. The Profit Controller/RMPCT Concepts Manual provides additional technical detail on the PVO algorithm.
Multi-Unit Dynamic Optimization via Profit Optimizer

The second level of optimization in Profit Suite’s control and optimization structure consists of multi-unit dynamic optimization using Profit Optimizer’s Distributed Quadratic Programming (DQP) technology. When process units interact with other units, it is important to consider the dynamics of their interactions and shared constraints when formulating the optimization problem. For example, one may want to maximize feed rate to an upstream unit but be limited by the production capacity of a downstream unit. Multiple unit optimization considers multiple process units, their multivariable controllers and any dynamic interactions between these units. Traditional attempts to solve this problem were to either:

1. include the multiple units into one large multivariable controller (MVC) and use the MVC optimizer on the combined units, or
2. use a detailed model to simulate the combined units, calculate global optimum targets, and pass these targets to multiple MVCs

The first solution, combined control, is relatively easy to implement but has several limitations:

- **Time delays degrade performance.** Processes with significant time delay between units are not well suited for combined control, thus degrading control performance. In addition, process models are extremely difficult to identify between units with long delays.

- **Cross-unit control is often undesirable.** Control may not be acceptable if the controller attempts to manipulate variables in one process unit to dynamically control variables in a different unit.

- **Distributed hardware may be a problem.** Control across multiple DCS data highways and/or computers is not always feasible.

- **Optimization often is all or nothing.** The combined controller cannot break the optimization problem into smaller sub-optimization problems if part of the process is off-line.

- **Bigger is not better.** As the size of the controller increases, tuning becomes more complex, operator acceptance and percent on-line time declines, maintenance is costly and difficult, and overall benefit goes down.

The second solution, detailed modeling for optimization, allows for multiple independent multivariable controllers but has its own disadvantages:

- **Detailed modeling is expensive.** Detailed process modeling is a complicated and costly process which can be difficult to maintain by in-plant personnel.

- **Matching plant operations and model predictions is difficult.** The process must be in steady-state before the models can be updated to match actual plant results. As optimization often occurs under non-steady-state conditions, the parameter estimation for model updating is disabled or simplified dynamic predictions are used to augment more detailed steady-state models. The end result in either case, however, is more system complexity as well as reduced benefits during non-steady-state operations.

- **Extensive data input increases solution risk.** Detailed modeling of the process requires many inputs and increases the probability of problems resulting from erroneous instrument or manually entered data.

- **Plant dynamics are a problem.** Steady-state models do not account for process dynamics. This can be problematic if optimum targets determined from steady-state models are downloaded simultaneously to many units with long delays between units. Although much of this can be avoided through careful implementation, an over-simplified transition to the dynamics of the real plant can result in downstream processes going off-spec or violating constraints until the upstream moves take effect.

- **Optimizers and controls can “fight.”** Careful coordination between the optimization system and MVC is necessary to prevent conflicting objectives. Otherwise, the tendency of the two systems is to “fight” each other. Multiple process models, LP or QP objective functions, and different execution frequencies must be effectively managed.
• **Extensive modeling is often not a requirement for success.** Optimization via detailed modeling is often an overkill solution for many optimization problems which can often be solved much more simply and cost-effectively through the practical application of linear process models and appropriate real-time plant feedback. Many times, however, extensive process modeling efforts are unnecessarily placed ahead of simpler but more effective approaches that leverage plant data, without the overkill effort that can be associated with detailed modeling.

To address these problems and to provide the best return on investment for our customers, Honeywell offers multiple unit optimization with the distributed quadratic programming (DQP) optimization component of the Profit Suite offering, Profit Optimizer. The advantages of Profit Optimizer are:

• **Reliability** - provides a multiple unit optimization solution which is highly reliable and easy to maintain and operate

• **Dynamic optimization** - provides a robust solution which handles non-steady-state operation and process dynamics between process units, and coordinates implementation of the optimization solution across multiple units, resulting in higher benefits compared to traditional steady-state optimization as shown in Figure 5

• **Works with controllers** - integrates multiple unit optimization with unit-level controller optimization (uses same models and economics as local optimization through the Profit Controller PVO option)

• **Leverages control investments** - capitalizes on the investments of predictive control models. Much time and expense is put into the development of dynamic MVC models. Profit Optimizer uses the same models as Profit Controller thereby significantly reducing implementation and maintenance costs

• **High return on investment** - Profit Optimizer costs significantly less to implement and maintain than a detailed modeling optimization approach and can often return the same optimization benefit, especially when Profit Bridge is added (see next section).

![Figure 5: Comparison of dynamic and steady-state optimization](image-url)

Profit Optimizer is an extension of the dynamic optimization technology found in Profit Controller (i.e. RMPCT and PVO), and it provides multiple-unit optimization by combining the QP objective functions from two or more PVO applications. Profit Optimizer may be quickly configured and implemented on top of existing Profit Controller applications with user-friendly graphical configuration tools. By using existing MVC models and graphical user interface (GUI) tools, large-scale optimization is feasible in a much shorter time and at a significantly lower cost than compared to traditional steady-state RTO solutions. Figure 6 illustrates a typical Profit Optimizer installation.
Profit Optimizer includes state-of-the-art dynamic optimization technology that makes it ideally suited for mid- to large-scale optimization problems on most processes. It applies to both linear and non-linear processes, uniquely leveraging the continuous process feedback design to combine step-wise linear modeling with quadratic optimization at each execution cycle (typically once per minute). For non-linear systems with local optima in the optimization search space, Profit Bridge or ProfitMax is recommended.

The key to the success of the Profit Optimizer approach is the patented cooperative control and optimization algorithm (patent pending). The cooperative optimization approach coordinates the underlying local unit optimizers (PVOs) through dynamic bridge models between units, and combines control-level constraints with additional global optimization variables and constraints.

Non-Linear Dynamic Optimization via Profit Bridge

Profit Bridge provides dynamic non-linear control and optimization capabilities to Honeywell’s Profit Controller and Profit Optimizer applications. By updating the linear models embedded in these applications with information from user-supplied non-linear process models, Profit Bridge represents a high performance alternative to large-scale, rigorous optimization systems.

Profit Bridge automatically extracts gain information from non-linear models and regularly updates the control and optimization models to reflect this information. The result is improved control and optimization benefits, since varying conditions that affect the optimum, such as changing feeds, economics and environmental factors, can be accounted for automatically.

As shown in Figure 7, Profit Bridge software integrates non-linear process models with Profit Controller and/or Profit Optimizer applications to deliver enhanced control and optimization benefits. Profit Bridge automatically extracts gain information from these models and updates the linear models in Profit Controller and Profit Optimizer with the gain information. This gain-updating feature provides superior control and optimization capability since the control and optimization models are constantly updated to reflect the current operating conditions.
Profit Bridge employs existing process models developed for off-line use in process design and analysis, thus leveraging the investment made to create these models, and ensuring consistent models for both off-line and on-line use. Profit Bridge is not limited to a specific type of process model; it can be easily configured to use models provided by most modeling systems or it can use custom user-written models. UniSim™ models (Honeywell’s modeling system based on HYSYS®) are supported by Profit Bridge.

Another advantage of Profit Bridge is that it allows smaller scale models to be used. Rather than modeling the entire process, Profit Bridge allows selective use of non-linear models when and where they are needed. Smaller scale models translate into lower installation and maintenance costs, higher execution speeds, and higher service factors, all of which add to the benefits achieved from improved process performance.

Profit Bridge should be used where non-linear process behaviour could result in an unconstrained optimum (i.e. FCC unit overcracking region), or a change in the optimal constraint set (i.e. ethylene plant optimization with varying feeds).

Converging on an Unconstrained Optimum

Typically, most units operate in a constrained mode where there are few available degrees of freedom. However, in some cases there is the potential for an unconstrained optimum, such as in FCC operation, where the optimal Riser Outlet Temperature (ROT) is chosen to maximize production of a specific component, such as naphtha.

The use of Profit Bridge for gain updating of Profit Controller is ideally suited for such an application and enables convergence of the solution to an unconstrained optimum. An LP solution with static gains will always reside at the intersection of constraint limits. When an unconstrained optimum is encountered using gain updating, the solutions of subsequent optimization runs will switch from one constraint intersection (i.e. corner) to another, and Profit Controller will move the process to the solution subject to the configured optimization speed. By using the MV soft limits to define MV step sizes, the distance between subsequent optimization solutions can be reduced by limiting the search space that Profit Controller has for its optimization calculations at each optimization interval. Profit Controller’s unique ability to separate the control horizon (time over which constraints are met) from the optimization horizon (time over which the optimization targets are reached) ensures that the controller does not oscillate when an unconstrained optimum is reached. Though minor oscillations occur as the solution switches between soft limits, these fluctuations are normally not observable and are close to the magnitude of the noise of the measurements. Figure 8 illustrates how this technique will converge on an unconstrained optimum with respect to, for example the ROT in an FCC unit. Location 1 represents the initial operating conditions and 2-5 represent subsequent operating points with 4 being the optimum. The bounds around location 4 are the soft limits (say 0.5 °F). A sufficiently small step size is used to avoid having the solution drift from the optimum.
The main benefits of using Profit Bridge in conjunction with Profit Controller and Profit Optimizer compared to traditional steady-state RTO are:

1. Low cost
 - Typical project cost ($200-400K) of a Profit Bridge project is significantly less than the typical $1M for full-scale, rigorous, model-based solutions

2. Quick delivery of benefits
 - Implementation time of 3-6 months compared with about 12 months for full-scale, rigorous, model-based solutions

3. Sustainable benefits
 - Much easier to maintain
 - Typically requires 5-10 percent of an engineer’s time to maintain
 - On-line availability typically > 95 percent
 - Low training time

4. High ROI
 - Similar benefits result in typical payback < six months
Non-Linear Steady-State Optimization Using the ProfitMax® Real-Time Optimization System

The next level of optimization includes ProfitMax, Honeywell’s non-linear steady-state optimization solution. ProfitMax is typically used where multiple local optima or significant non-linear behaviour is observed. In addition to on-line optimization, ProfitMax can be used for predictive simulation, process monitoring and troubleshooting, engineering studies, development of regressed models for control, planning and scheduling, and operator training. ProfitMax can be run in on-line or off-line modes.

ProfitMax currently uses the UniSim Design Suite simulation software from Honeywell or the NOVA™ Optimization and Modeling System to determine optimum steady-state targets that can be downloaded to Profit Optimizer or Profit Controller, or to another APC vendor’s application. ProfitMax has the flexibility to carry out the steps required for traditional RTO such as data validation, steady-state detection, data reconciliation and parameter estimation, optimization, etc. ProfitMax utilizes Honeywell’s Unifomance PHD historian as the interface to all plant and control system information.

Non-Linear Control Using Profit NLC

Profit NLC utilizes a non-linear dynamic model of the plant to carry out both control and optimization simultaneously, primarily for polymer applications. Profit NLC technology is used in conjunction with the Unified Real-Time (URT) infrastructure common to all Profit Suite applciations to provide this solution. Delivering robust control and optimization, Profit NLC is designed to control nonlinear processes in both process gains and process dynamics. The use of a rigorous process model that describes process equipment geometry and chemical kinetics removes the need for step testing the plant. This model also combines the advantages of reliable multivariable control and optimization of on-line process and dynamic off-line simulation for new product grades in polymer applications.

Honeywell recognizes that each of these optimization technologies has merit depending on the application, and as a result, each of these technologies form part of our layered optimization solution.
Recommended Optimization Approach and Benefits

In general, Honeywell’s recommended RTO solution is to use Profit Controller for single unit optimization, Profit Optimizer in conjunction with Profit Controller for multi-unit optimization, and then add Profit Bridge as necessary to account for significant non-linearities that could result in an unconstrained optimization solution. We believe that this solution approach is the most practical optimization solution available and results in significant, sustainable benefits with low maintenance costs. Our extensive experience with this technology reveals significant benefits comparable to traditional RTO, but with less maintenance requirements and higher on-line time (>95 percent). Project implementation times of 3-6 months for this recommended approach is significantly less than traditional RTO (typically 6-12 months), and training time is low for engineers and operators because the solution leverages existing advanced control technology and user interface(s) without the need for another level of end-user complexity.

Honeywell recognizes that in some cases, traditional RTO is still necessary and therefore our ProfitMax solution is available. For example, mixed integer non-linear programming (MINLP) problems that might occur with utility systems when determining the optimal driver selection (steam vs. electric) is an example where ProfitMax is required. Also, traditional RTO has some additional features such as the ability to do process monitoring, however the drawback is that the large models are often difficult to maintain for control engineers.

Profit NLC is recommended for those cases where step testing is difficult (or prohibited), significant non-linearities exist in the process and there are frequent changes due to product specification changes. An example where Profit NLC has been successful is in control and optimization of polyethylene production where frequent product transitions may occur.

Optimization Benefit Estimation

Generally speaking, there are no easy ways to estimate optimization benefits since optimization benefits are affected by equipment constraints, product constraints, process constraints (i.e. degrees of freedom) and changing economic conditions. However, the following three approaches can be used to assist in estimating optimization benefits during project justification.

1. Use typical industry standard estimates as indicated in the benefit table presented earlier. Take 20 percent of the benefits in the table and assume that optimization can provide that amount. This method is subject to a significant amount of error, but can provide some rule-of-thumb benefits.

2. If advanced control benefits have been estimated or are known for the particular application, then estimate the optimization benefits as 20 percent of the known or estimated APC benefits. Again, this is a rule-of-thumb estimate, but is more accurate than method 1 since it accounts for the specific application.

3. Undertake a benefit study to estimate benefits – contact consultant to determine if necessary. Typically such a study requires a site visit and 3-6 weeks of effort, and involves running a model of the process (supplied by the customer) to determine the non-linear behaviour of the plant over the expected operating region and observation of the active constraint sets under varying process and economic conditions. The study can more accurately identify the anticipated benefits and also whether the non-linearity of the process justifies using Profit Bridge to supply gain updating or potentially ProfitMax. With Honeywell’s UniSim simulation software, these studies are much easier to do.
Summary

In summary, Honeywell provides a layered optimization solution that can solve all types of optimization problems. Honeywell has worldwide experience in all of the technologies represented by the various layers. The result of our layered approach is a solution that achieves significant benefits with low risk, requires low lifecycle maintenance costs and sustains benefits in the long term.

More Information

For more information on Honeywell solutions, visit our website www.honeywell.com/ps, or contact your Honeywell account manager.

Automation & Control Solutions

Process Solutions
Honeywell
2500 W. Union Hills Dr.
Phoenix, AZ 85027
Tel: +1-602-313-6665 or 877-466-3993
www.honeywell.com/ps