Executive Summary

Both of these publications have similar KPIs for alarm system performance. So what does this mean for your industry?

As an employer, irrespective of the size of the business, you have the responsibility for the day-to-day health, safety and welfare of your employees and visitors to your workplace. This duty of care is usually set out in the occupational health and safety (OHS) legislation of the relevant country. Companies as well as individuals from Supervisor level to CEO level have been legally prosecuted for breaches in OH&S regulations in some countries. Duty of care usually mandates that employers of process and other automated industries must provide a suitable alarm system that gives adequate warning of impending abnormal situations to operators so that they have time to take action to prevent the potential consequences from occurring. Duty of care also includes the provision of a control system that does not put the operators under undue levels of stress, which could also compromise the safety of other employees.

This paper provides information on what alarm management is and why it is important. It also provides an overview of these global standards, and what you can do to achieve compliance.
Table of Contents

Executive Summary .. 1

Document Terminology ... 5

What is Alarm Management? .. 6

 Definition .. 6
 Layer of Protection .. 6

What Else is Alarm Management? .. 6

 Continuous Lifecycle ... 6
 Plant Maintenance/Reliability ... 6
 Good Process Control .. 6
 Outcome of a Risk Assessment .. 7
 Related to Equipment Failure .. 7
 Enhanced/Advanced Control .. 7
 Abnormal Situation Management (ASM) ... 7
 It Has Been Widely Ignored for a Long Time .. 7
 Often Used In Fault Tree Analysis (FTA) ... 7

What is a Lack of Alarm Management? .. 8

 Potential Industrial Disasters .. 8
 Example Plant Incident – Swiss Cheese Risk Model. .. 8
 Employee Impact .. 8
 Employer Impact ... 8
 Court Case? .. 8

Demystifying Standards & Guidelines ... 8

 Introduction .. 8
 Which standard do you comply with? .. 8

Key Features of EEMUA 191 and ISA 18.2 .. 8

 EEMUA Key Features .. 9
 ISA 18.2 Key Features ... 10

EEMUA Alarm Performance KPIs .. 10

 ISA 18.2 Alarm Performance KPIs ... 10

ISA 18.2 Lifecycle Model .. 11

 Scope of the Lifecycle Model .. 13
 Stages of the Lifecycle Model ... 13
 Philosophy .. 13
 Identification ... 14
 Rationalization ... 14
 Design .. 14
 Implementation & Training ... 14
 Operation .. 14
 Maintenance .. 14
 Monitoring & Assessment .. 14
 Management of Change .. 14
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Layers of Protection in a Processing Plant</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Fault Tree Analysis</td>
<td>6</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Swiss Cheese Risk Model</td>
<td>7</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Sample EEMUA Results – Total Plant for One Month</td>
<td>10</td>
</tr>
<tr>
<td>Figure 6</td>
<td>ISA 18.2 Alarm Management Lifecycle</td>
<td>11</td>
</tr>
<tr>
<td>Table 1</td>
<td>EEMUA 191 – Benchmark for Assessing Average Alarm Rates</td>
<td>9</td>
</tr>
<tr>
<td>Table 2</td>
<td>EEMUA 191 – Guidance on Alarm Rate Following an Upset</td>
<td>9</td>
</tr>
<tr>
<td>Table 3</td>
<td>Sample ISA 18.2 Alarm Performance KPIs</td>
<td>10</td>
</tr>
</tbody>
</table>
Document Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEMUA</td>
<td>Engineering Equipment Material Users Association</td>
</tr>
<tr>
<td>LOP</td>
<td>Layers of Protection</td>
</tr>
<tr>
<td>LOPA</td>
<td>Layers of Protection Analysis</td>
</tr>
<tr>
<td>FTA</td>
<td>Fault Tree Analysis</td>
</tr>
<tr>
<td>SIL</td>
<td>Safety Integrity Level</td>
</tr>
<tr>
<td>ISA 18.2</td>
<td>ANSI/ISA-18.2-2009</td>
</tr>
<tr>
<td>DCS</td>
<td>Distribute Control System</td>
</tr>
<tr>
<td>ASM</td>
<td>Abnormal Situation Management</td>
</tr>
<tr>
<td>OH&S</td>
<td>Occupational Health and Safety</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>ISA</td>
<td>International Society of Automation</td>
</tr>
<tr>
<td>NOHSC</td>
<td>National Occupational Health and Safety Commission</td>
</tr>
</tbody>
</table>
What is Alarm Management?

Definition
“Process by which alarms are engineered, monitored, and managed to ensure safe, reliable operations”

Layer of Protection
The concept of Layers of Protection is to provide Independent Layers of Protection around hazardous processes to reduce the risk of undesired consequences such as fire, toxic releases etc (Refer to Figure 1). Alarms are considered to be a Layer of Protection (LOP) and are often used in Safety Integrity Level (SIL) analysis. The intent of these alarms is to warn operators of an impending abnormal situation, which can often have safety related consequences. In determining the average Probability of Failure on Demand for a SIL loop that contains an alarm as a LOP, the probability of the operator failing to adequately respond to the alarm must be considered. Some of the plants that have been reviewed by the author have had unrealistic probability of failure figures such as 0.1 (i.e. a 1 in 10 year probability), where the alarm rates have been over the “maximum manageable” as deemed in the ISA 18.2 standard. This has the potential to make the SIL design for a loop to be inaccurate.

![Figure 1: Layers of Protection in a Processing Plant](image)

What Else is Alarm Management?

Continuous Lifecycle
Alarm management is a lifecycle process based on a continuous improvement process. If the alarms and associated plant and equipment are not regularly maintained then it is most likely the system performance will degrade over time.

Plant Maintenance/Reliability
Good plant maintenance practices are absolutely critical in terms of plant production rates, safety, and alarm system performance. Poor practices can result in chattering alarms, ineffective instruments, false alarms and safety related incidents.

Good Process Control
Good process control assists in minimizing the probability of abnormal situations from occurring due to interlock failure, incorrect logic configuration or uncontrolled PID loops. Typically poor process control also results in operator actions, chattering alarms etc.
Outcome of a Risk Assessment

Every task that is required within a processing plant should be subject to a risk assessment, including determining the requirement to use an alarm to minimize the risk potential. This should be considered simply good engineering practice.

Related to Equipment Failure

All manufactured equipment eventually fails with time! Unfortunately some companies rely too heavily on the higher LOPs (safety systems, pressure relief valves etc) to protect the integrity of their plants. All safety equipment has a probability to fail on demand and should only be employed as a last means of defence. Two recent incidents in Australia involved an explosion in a vessel that lacked the correct PRV’s, while another involved both redundant safety system processors rebooting simultaneously.

Enhanced/Advanced Control

There have been significant developments in smart alarming techniques such as state-based alarming, model-based alarming and predictive alarming. These techniques are used to improve the performance of the alarm system as well as minimizing the chance of abnormal situations from occurring.

Abnormal Situation Management (ASM)

This is all about allowing the operator enough time and resources to prevent an unusual event from occurring. The ASM Consortium® has undertaken significant research into graphics, control systems and alarm systems for abnormal situation management.

It Has Been Widely Ignored for a Long Time

On many sites the operators ignore the alarms as the systems are unusable in their current state. There are still chemical plants, coal preparation plants, refineries, power stations, etc where this is the case!

Often Used In Fault Tree Analysis (FTA)

Fault Tree Analysis is a common method of undertaking quantitative risk assessments and is often used to determine the SIL level of a Safety Integrity Level loop.

![Fault Tree Analysis](image)

FTA inputs are either frequency of an event occurring or the average probability of failure on demand. If the PFD for the operator failing to respond to the high level alarm is changed to 0.5, the loop PFD is increased from 0.00011 to 0.00051. Also if the high level trip system is only tested once a year (instead of twice) then the PFD is effectively doubled.

Some industrial plants have fault tree analysis results that put unrealistic targets on operators being able to detect and respond to an alarm before the safety system takes action.
What is a Lack of Alarm Management?

Potential Industrial Disasters

Abnormal Situations cost industry millions of dollars every year. A number of plant incidents that have been partly attributed to poor alarm management practices have tragically resulted in injury and death of personnel and huge financial losses. Two examples are the Longford Gas Explosion in 1998 and the Texas City Oil Refinery Explosion in 2005.

Example Plant Incident – Swiss Cheese Risk Model.

The following scenario is based on a true incident assessed against the Swiss Cheese Risk Model (Figure 5), which was originally developed by James Reason. Each hole in the cheese is symbolic of a potential pathway to employee exposure.

![Swiss Cheese Risk Model](image)

- Plant is relatively unstable. It is getting towards the end of 12hr shift: **OPERATIONAL**.
- A tank containing hot material reaches HH level: **PROCESS**.
- The HH level DCS pump interlock was disabled to replace the instrument and inadvertently not reenabled: **POOR MOC**.
- The control room operator misses the alarm because they are overloaded and there is an alarm flood: **ALARM MANAGEMENT**.
- Safety level switches in the SIL loop for tripping the incoming pump power supply have not been tested for over two years and fail to operate: **MAINTENANCE**
- The tank overflows with workers in close vicinity: **INCIDENT**

Employee Impact

What are the potential employee impacts?

- Possible Injury
- Potential Fatality
- Flow-on Family/Community effects

Employer Impact

What are the potential employer impacts?

- Operational Downtime/Loss of Production
- Investigation by the relevant authority
- Damage to reputation
- Potential for legal action
Court Case?
If in the above plant incident an employee was actually killed or severely injured, then it is likely that the employer would end up in court. Two questions that a prosecution might ask the employer are:
- Did you comply with an Internationally accepted standard”?
- Did you follow known, good engineering practice”?
An Employer typically can not use the following excuses “I do not have the people” or “I wasn’t aware that such an accepted standard existed”. This could refer to a published ANSI, IEC, or other standard, a draft standard, or even a published report/standard from a relevant authority. In recent court cases there has been more use of expert witnesses. If an expert witness was brought in to review the above incident, then the following is a possible response:

EEMUA 191 was released in 1999 and is a well recognized global defacto standard for Alarm Systems. ISA 18.2 has been well publicized over the past 24 months and has just been released. Operators have complained a number of times about the state of the alarm system. Benchmarking has determined that many of the alarm KPIs exceed what is deemed “Very unlikely to be acceptable” in EEMUA 191 and exceeds the "Maximum Manageable" in ISA 18.2. Management of change practices do not meet known good engineering practices. The safety function level switches had not been tested for over two years.”

The outcome of this case would most likely not be in favor of the employer! would be in place not later than June 1, 2008. As June quickly approaches, many pipeline operators are looking to available alarm management.

Demystifying Standards & Guidelines

Introduction
EEMUA 191 was first released in 1999 and has since been referred to as the defacto standard for alarm management. EEMUA is written in a text book format and provides some excellent examples in the appendixes. ISA 18.2 has been written more like a standard and has many similarities to the safety instrumented systems standards IEC 61508/11.

Which standard do you comply with?
EEMUA 191 and ISA 18.2 complement each other. In summary EEMUA describes in detail the tools and techniques for various aspects of alarm management (e.g. rationalization, risk assessments, graphics design), whilst ISA 18.2 clearly defines the required performance KPIs and the overall lifecycle approach to alarm management. The performance KPIs for both documents are similar, although they are more clearly defined in Table 14 of ISA 18.2.

Key Features of EEMUA 191 and ISA 18.2
The main features of EEMUA 191 and ISA 18.2 are highlighted in this section.

EEMUA Key Features
- Good detail on alarm design, including different risk assessment approaches.
- Written in a easily readable text-book format – excellent worked examples.
- New section on Alerts.
- Philosophy, principles of alarm system design, implementation issues.
- Measuring performance and managing an improvement programme.
- Specifications for alarm systems.
- Design of field sensors.
- Design of alarm displays.
- Performance metrics and useful questionnaires.
- Alarm suppression hazard study.
- Sample risk assessments and determining priority – enhanced.
- New section on alarm management in Batch Plants.
- New section on alarm system improvement process.
- Complementary to ISA 18.2.

ISA 18.2 Key Features
- Large focus on an alarm system lifecycle.
- Very clear alarm system performance KPIs.
- Written like other similar standards – eg IEC AS 61511.
- Section on compliance.
- Alarm Philosophy – what must be included in table format.
- Alarm System requirements specification.
- Identification and rationalization.
- Basic alarm design, HMI design, and enhanced and advanced methods.
- Implementation, operation, and maintenance.
- Monitoring and assessment, management of change, and auditing.
- Less examples are given.
- Complementary to EEMUA 191.

EEMUA Alarm Performance KPIs
EEMUA suggests three main KPIs on a per operator basis for 10 minute time periods:
- Average Alarm Rate
- Maximum Alarm rate
- % of time Alarm rates are outside of acceptability target

Average alarm rate is defined as a level of acceptability in Table 1 below. Maximum alarm rates following a plant upset are shown in Table 2. EEMUA mentions that the percentage of time alarm rates which are outside of the acceptability target of one per two minutes (or 30 per hour) should be a small number. Once a small number is achieved then it should be based on 1 per 5 minutes to ensure continuous improvement.

<table>
<thead>
<tr>
<th>Long term average alarm rate in steady operation</th>
<th>Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than one per minute</td>
<td>Very likely to be unacceptable</td>
</tr>
<tr>
<td>One per 2 minutes</td>
<td>Likely to be over-demanding (industry average in HSE survey)</td>
</tr>
<tr>
<td>One per 5 minutes</td>
<td>Manageable</td>
</tr>
<tr>
<td>Less than one per 10 minutes</td>
<td>Very likely to be acceptable</td>
</tr>
</tbody>
</table>

Table 1: EEMUA 191 – Benchmark for Assessing Average Alarm Rates
EEMUA also states that a site, which has a control system with greater than 1000 configured alarms, should be targeting fewer than 10 standing alarms and fewer than 30 shelved alarms (excluding maintenance shelved alarms). EEMUA also provides a graphical representation for different levels of performance of an alarm system. A sample scatter graph report for a plant is shown in Figure 6.

ISA 18.2 Alarm Performance KPIs

Table 3 shows the important performance metrics listed in Figure 14 of the standard. These alarm performance metrics and target values are very clearly defined and should be the target KPIs for your plant. While these targets may initially appear onerous, they should be possible over time. If your plant’s alarm system performance does not meet the following KPIs, it is important that you can demonstrate continuous improvement with the goal and processes in place to reach these targets.

A flood is defined as starting when 10 or more alarms (per operator) are received within a 10 minute period, and ends when less than 5 alarms are received in a subsequent 10 minute period. A chattering alarm is one that is on then off and on again in a short period of time (eg 1 min). Fleeting and/or momentary alarms turn on and off very quickly, but do not necessarily repeat. Stale alarms are those that go into alarm and do not return to the normal state for at least 24 hrs.
ISA 18.2 Lifecycle Model

ISA 18.2 Lifecycle Model

The lifecycle model is an excellent method of representing the overall process of alarm system management. It is an ongoing process that is suitable for new or existing systems. It has been designed to represent sequential stages, some of which run simultaneously with other stages that are linked horizontally (e.g., MOC (Stage I) must be followed for Stages B, C, D, and E).

In some cases a sequential stage may be “skipped”. For example, during a rationalization exercise the outcome may be an alarm setting change, which may not require detailed design to implement.
Scope of the Lifecycle Model

The lifecycle model is limited to computer based alarm systems and excludes sensors and final control elements. Safety Instrumented Systems (SIS) are also excluded except for any alarms generated from them.

Stages of the lifecycle model

Philosophy

An Alarm Philosophy documents the site approach to alarm management and is a mandatory requirement. It includes the definitions and principles and details of the practices and procedures for each of the remaining life cycle stages. It provides a lasting reference to sustain an effective alarm system. A table containing the required and recommended contents of the Alarm Philosophy is provided in the draft standard. Alarm System Functional Specifications detail the control system specific implementation related to the Alarm Philosophy definitions.
Identification
Many methods are available to determine if an alarm is required. Some of these are Process Hazard Analysis (PHA), incident investigations, HAZOPS/CHAZOPS, and alarm design/rationalization workshops. The outcome of a HAZOP might be that an alarm is required to warn the operator of an abnormal situation (e.g., High Pressure). Typically a HAZOP exercise does not consider the following: is the particular tag the most suitable to alarm, what is the ideal setting, configuration details, the potential operator workload etc. These details are discussed in the Rationalization stage before an alarm is to be implemented. Identification and the following three stages are closely related. Due to different terminology used in process industries, it can be somewhat confusing as to which steps in the overall design process are undertaken in each stage.

Rationalization
Alarm rationalization is about reconciling each individual alarm against the principles and requirements of the alarm philosophy. It is important that the relevant data for each alarm is documented to support the other stages of the life cycle. This includes the alarm description, settings, causes of an alarm, the consequence of no action, the required operator action, response time, consequence rating, etc. Consequences and the response time are documented and the alarm priority is determined from a matrix of the consequence severity and response time. This matrix is defined by the alarm philosophy. The methodology in the Rationalization stage also applies for new projects. The main difference with new projects is that typically there is no historical trends or alarm data that can be referred to.

Design
The design phase includes the basic DCS/PLC configuration of the alarm, Human Machine Interface (HMI) for the alarm, and any advanced methods of alarm management. These requirements are determined in the rationalization stage.

Implementation & Training
This stage involves the various other activities required to put the alarm into service. It includes testing of the alarm system functions as well as relevant training for the operator and other personnel.

Operation
The alarm is now in service and reporting abnormal conditions to the operator.

Maintenance
Process measurement instruments, final control elements, and control systems all require periodic/predictive maintenance to ensure their continued reliable operation. This is critical to ensure the ongoing performance of the alarm system.

Monitoring & Assessment
This stage includes the periodic collection and analysis of data from alarms. Without monitoring it is virtually impossible to maintain an effective alarm system. Assessment should be undertaken frequently (daily or weekly) and is the primary method for determining problems such as nuisance alarms, stale alarms, and alarm floods.

Management of Change
Management of change is a critical stage that helps ensure the ongoing integrity of the alarm system. It needs to be a structured process of approval and authorization for any additions, modifications, and deletions of alarms from the system.

Audit
A periodic audit of the alarm system and the processes detailed in the alarm philosophy may determine the need to modify processes, the philosophy, or the design etc. This is also the ideal stage to enter the alarm system lifecycle process. The audit may also highlight that an organization’s discipline to follow the processes (especially MOC) may need improvement.
Entering the Lifecycle Model

It is possible to enter the lifecycle model from the Philosophy, Monitoring and Assessment, or Auditing stage.

For Greenfields projects it is best to start with a Philosophy before any rationalization/design is undertaken.

For existing sites the ideal entry point is usually the Monitoring and Assessment stage, which will provide a benchmark for the site alarm system (per operator). This provides a snapshot of the health of the alarm system and can be used to justify improvement work. Undertaking a detailed audit will highlight any deficiencies that your alarm system will have in any of the other stages (A-I).

Lifecycle Model Loops

There are three “loops” in the lifecycle model that are represented by the dotted lines in Figure 6. If an alarm issue is detected in the Monitoring and Assessment stage then it would be resolved via the Monitoring and Maintenance Loop (eg chattering alarm) or the Monitoring and Management of Change Loop (eg more complex issue). The monitoring and maintenance loop typically is applied for simple maintenance related issues whereby the Monitoring and Management of Change Loop is required for any design changes. The Auditing and Philosophy Loop basically entails the whole lifecycle process. Periodic audits of your alarm system are a requirement of the standard.

ISA 18.2 Compliance.

The ISA 18.2 has a section on compliance (section 4.1) and a grandfather clause (section 4.2). It refers to those existing plants that must be able to demonstrate that their alarm system “equipment is designed, maintained, inspected, tested, and operated in a safe manner”.

What Steps Can You Take to Comply?

Now is the time to act. The following steps will help you get on the road to compliance:

- Purchase EEMUA 191 and ISA 18.2.
- Undertake some form of an audit of your alarm system. An audit will highlight the deficiencies of your alarm system and what areas need to be improved. As an absolute minimum, undertake a benchmarking and assessment project to determine if your alarm rates are acceptable.
- It is critical to get senior management sponsorship for an alarm system improvement project. Information that should help management sponsor your project are operator survey results, and a benchmarking and assessment report which compares your plant alarm system KPIs with EEMUA 191 and ISA 18.2 requirements.
- Prepare a Strategic Plan to reach compliance. This plan may contain the following:
 1. Philosophy Document and then Functional Specifications.
 2. Purchase of alarm database and associated software tools.
 3. Top 20 and/or Classic rationalization depending on budget and the state of the alarm system.
 4. Project plan for the next 12 – 24 months (including milestones).
 5. Required training – engineers, technician, and operators.
- Implement the Strategic Plan!
Conclusion

The author has visited many processing plants globally over a number of years and the situation remains that many plants are still not taking alarm management seriously enough.

Alarms form part of your plant’s layer of protection and as such should be maintained to a level stated in EEMUA 191 and ISA 18.2.

EEMUA was first released in 1999 and ISA 18.2 has also been released – if your plant’s alarm system is ineffective or even totally ignored by the operators – then I suggest you act now!

In the future it is expected that there will be more prosecutions for OH&S breaches!

References

1. EEMUA Publication 191 “ALARM SYSTEMS - A guide to Design, Management, and Procurement”
4. IEC 61511-2004 “Functional safety - Safety instrumented systems for the process industry sector”