Sustain.Ability.

Tom Williams
ISA-106 and Automated Procedures
ISA-106 Goals and Leadership

• Goals:
 – Develop Standards for Procedure Automation for the Continuous Process Industry (Analogous to ISA-88 for Batch Process Industry)
 – Issue Standards in 2012-2013 for review
 – Promote Procedural Automation

• Leadership:
 – ISA Managing Director (ISA-106 Sponsor): Maurice Wilkins, Yokogawa
 – Co-chair: Yahya Nazer, Dow Chemical
 – Co-Chair: Marty King, Chevron moving into team role due to reassignment
 – Co-Chair: Bill Wray, Bayer Material Science, was Vice-Chair
 – Editor: Dave Emerson, Yokogawa
ISA-106 Membership

• Very Broad Group (about 150 persons)
 – Operating companies
 Oil, Gas and Petroleum Companies (ConocoPhillips, Valero, Shell, Chevron, Aramco, Total, Qatar, Irving Oil, ExxonMobil, BP Lubricants, Lubrizol, etc.)
 Chemical Companies/Pharmaceutical (DOW, AirLiquide, Bayer Material Sciences, Eli Lilly, Braskem, GE Energy, DuPont Metalandes, P&G, EastmanKodak, etc.)
 Nuclear Industry/Government (Savannah River, AREVA)
 – Vendors (Yokogawa, Emerson, Honeywell, Invensys, ABB, Rockwell, Siemens)
 – Media (ARC Advisory, Putnam Media)
 – Universities (Oklahoma State, University College, Ghent)
TABLE OF CONTENTS

1 Scope ... 10
2 References.. 11
 2.1 Cited References .. 11
 2.2 Relevant References ... 11
 2.3 References of Interest .. 12
3 Definitions of Terms and Abbreviations .. 13
 3.1 Definition of Terms .. 13
 3.2 Abbreviations ... 19
4 Historical Perspective .. 21
5 Value Proposition ... 22
6 Models ... 26
 6.1 Procedural Automation Models ... 26
 6.2 Physical Model .. 27
 6.3 Procedure Requirements Model ... 29
 6.4 Procedure Implementation Model ... 32
 6.5 Model Summary ... 35
 6.6 Collapsibility ... 37
 6.7 Mapping Procedure Requirements to Implementation Modules 41
 6.8 Implementation Modules .. 43
 6.9 Applying Procedures using Process States .. 48
 6.10 Mapping Implementation Modules to BPCS Components .. 53
 6.11 Alignment with Other Standards ... 55
 6.12 Model Level Names Used in Various Industries .. 59
Annex A (Informative) Bibliography .. 62
Annex B (Informative) Questions and Answers About Procedure Automation 63
Hard work of a Committee

- Definitions
- Models
- Examples

These have generated nearly all of the discussion.
Major Themes

• Models:
 – Procedure Automation Model
 – Physical Model
 – Procedure Requirements Model
 – Procedure Implementation Model

• Sharing of Best Practices and Examples

• Procedure Automation Structure using Process States (Advocated by DOW)
 – (state-based automation of procedures)
Basic Process Control System (BPCS)

Figure 16 Implementation Modules Mapped to BPCS Components
Mapping Between Physical Model through Implementation

Physical Model

- Enterprise
 - Site
 - Plant
 - Plant Area
 - Unit
 - Equipment
 - Device

Procedure Requirements Model

- Enterprise Procedure Requirements
 - Site Procedure Requirements
 - Plant Procedure Requirements
 - Plant Area Procedure Requirements
 - Unit Procedure Requirements
 - Equipment Procedure Requirements
 - Device Procedure Requirements

Procedure Implementation Model

- Site Implementation Modules
 - Plant Implementation Modules
 - Plant Area Implementation Modules
 - Unit Implementation Modules
 - Equipment Implementation Modules
 - Control Implementation Modules
Comparison ISA-95, -88, and -106

ISA-95: “Level 4 activities typically deal with these objects”

ISA-88 Physical Model

ISA-106 Physical Model

ISA-106 primarily deals with these objects

Figure 19 Comparison of ISA-95, ISA-88 and ISA-106 Physical Models and Equipment Hierarchy
Dow’s Experience & Practices are described in the Technical Report

In each process state different functions maybe available to the operators via programming to allow predetermined actions, set predetermined alarm modes, etc.

In one mode an abnormal situation management handler may be invoked to deal with a specific problem that has occurred before or can be anticipated. In other modes this maybe a bad choice.
What is Operator Effectiveness?

“…Smart technology alone cannot ensure success without proper operating procedures and trained, motivated personnel.”

Joseph P. Shunta,
Achieving World Class Manufacturing Through Process Control, p. 3

Operator Effectiveness is the optimal combined use of environment, systems, operating discipline, and human operator skills to achieve the best possible results.
Procedural Automation is one component of Operator Effectiveness:

- Operator retains responsibility for outcomes
- Use very carefully considered graphics, sequences, and recipes
- Typical tools to assist Operator Effectiveness:
 - HMI Display (ASM Consortium)
 - Alarm Management (ASM Consortium)
 - Procedures, some automated (ASM Consortium)
 - Effective Process Control
 - Operator Training
 - Workflow, Expectations, and Span of Control
ASM Guidelines on Effective Procedure Automation

• Improve the effective use of procedures
• Content and Format
• Development
• Deployment
• Maintenance
• Training

Make Better Decisions, Faster

Figure B-2 ASM Supervisory Control Model for Normal Situations.

- **Orienting** – Sensing, perception, or discrimination
- **Evaluating** – Information processing (thinking or interpretation)
- **Acting** – Physical or verbal response
- **Assessing** – Information processing (thinking or interpretation)
Procedure Automation Value

• Reduce Incidents
 – Environmental, Safety, Equipment Damage, Near Misses, etc

• Improve Financial Results
 – Increase Output, Reduce Costs & Waste, Nimbleness

• Capture Best Practices & Intellectual Property
 – Ensure Best Practices are followed: Standard Work
 – Capture knowledge of most skilled operator
 – Train new operators

• Reduce Stress on Operators
 – Relieve operators of repetitive tasks when no judgment is required
 – Use system vigilance

Section 5 in ISA-106 Report contains a detailed list
When to Automate Procedures

• Complex tasks, requiring vigilance:
 – Many steps
 – Ramping
 – Wait periods to meet trigger point criteria
• Lengthy tasks, longer than one shift or one day
• Tasks done infrequently, so operators rarely master it
• When past history indicates mistakes are easy to make
• Tasks that require absolute adherence to details for quality outcomes
• When strong financial incentives exist
Most plants are not continually run at steady-state. Operators need to manage the following complex procedures:

Shutdown/Startup
Increased Production. Operator launched.

Grade Change
Pressure to minimize time to next grade: Production and Quality big factors. Operator Launched.

Abnormal Condition resulting in “SafePark”
Bringing plant to safe holding point to be ready to resume Operations, or shutdown plant. Automatically launched.

Cyclically Anticipated & Planned Activities
Tasks repeated based upon well defined criteria, normal operations (regeneration, pump changeover, decoking, etc…). Not capable of precise scheduling. Operator launched.
Procedure Automation has Varying Degrees

- **Manual Procedures**
 - Completely manual
 - Limited interaction with control system
 - Operator action/guidance at each step, possibly from automation system

- **Semi-Automated Procedures**
 - Some automatic sequencing and checking
 - Ensure consistent interaction with automation system
 - Manual intervention required

- **Automated Procedures**
 - Automated sequence advancement and checking
 - Coordinate automation system activities
 - Extensive exception handling

Different Levels of Automation May Be Appropriate
Summary

• ISA-106 Committee is preparing a Technical Report:
 – The report documents findings to-date
 – It considers and maps to prior work by ISA-88 and ISA-95
 – It recommends automating procedures
 – It recommends process state based systems

• Honeywell participates in ISA-106:
 – Voting member of main committee
 – Participating on at least three subcommittees

• What You Can Do:
 – Review and Comment on the Technical Report when Released

• Honeywell has considerable experience in automating procedures
THANKS FOR ATTENDING