Ultrasonic gas custody transfer meter Portfolio

- **Q.Sonicmax, the new benchmark in accuracy**
 The world’s first eight-path meter combining both reflective and direct measurements delivers the lowest possible uncertainty in the most demanding operations.

- **Q.Sonicplus, our multipath custody transfer standard**
 The patented path configuration enables the measurement of both swirl and asymmetry, resulting in unequalled profile recognition and diagnostic possibilities.

- **TwinSonicplus, two independent measurements in one meter body, ultrasonic gas meter**
 It combines the field-proven Q.Sonicplus ultrasonic meter with an additional independent check measurement for verification in the same body.
Our Business

Natural Gas – Midstream applications

- Q.Sonicmax, our multipath ultrasonic gas meter highest industry standard for custody transfer
- Combining the best out of two worlds to maintain the lowest uncertainty with high robustness to meet the individual operational demands

Industry Needs

- High reliability and availability
- Lowest uncertainty
- Easy to maintain and intuitive operation
- Fast detection of liquid and dirt build-up
- Easy connectivity from classical to modern communications

Problems We Solve

- No exclusions from the standard or restricted flow rate to meet OIML accuracy class 0.5
- Globally certified Ultrasonic meter
- Reliability as proven in thousands installations
- State of the Art HMI and diagnostic software
Q.Sonicmax: A new benchmark in custody transfer accuracy

- Patented multipath configuration, fully symmetrical layout of two swirl paths with double reflection and six direct paths.
- Highest levels of accuracy and insight to boost the reliability, performance and efficiency of custody transfer applications
- Best in class OIML Class 0.5 even in severe disturbance conditions
- Short inlet (5D)
- Market leading ultrasonic metering technology
- Advanced diagnostics software
Ultrasonic measurement: How does it work?

Absolute travel time measurement

\[t_{ab} = \frac{L}{c + v \cdot \cos \varphi} \]

\[t_{ba} = \frac{L}{c - v \cdot \cos \varphi} \]

\[v_m = \frac{L}{2 \cdot \cos \varphi} \left(\frac{1}{t_{ab}} - \frac{1}{t_{ba}} \right) \]

\[v: \text{average gas velocity} \]
\[c: \text{velocity of sound (VOS)} \]
Ultrasonic measurement: How does it work?

Calculation of Volume Flow

\[A = \frac{\pi}{4} \cdot D_i^2 \quad [m^2] \]

\[Q_L = V_m \cdot A \cdot 3600 \quad [m^3/h] \]

\[Q_L = \frac{L}{2 \cdot \cos (\varphi)} \cdot \left(\frac{1}{t_{ab}} - \frac{1}{t_{ba}} \right) \cdot A \cdot 3600 \quad [m^3/h] \]

Q_L calculation based on:

1. Measured Gas Velocity Resulting From Difference in Transit Time
2. Internal Area of Meter Body (Mechanically & Acoustically Verified)
3. Multiplication Factor For Desired Units
The Intelligent Gas Solutions Across The Gas Value Chain

Reduced risk through field-proven technology within many installations to certified high-accuracy global flow standards

Improved accuracy of measurement under non-ideal flow conditions with the unique patented 8-path configuration

Improved measurement confidence through the most accurate acoustic path configuration available to the market

Improved performance through dynamic meter body correction and path geometry

Improved reliability through state of the art transducers and electronics
Ultrasonic Gas Meter Q.Sonic$^{\text{max}}$

Multipath custody transfer standard

- 8-path (2 swirls + 6 directs). Swirls for linearity and stability. Directs for enhanced robustness
- Sizes 4” to 36”
- ANSI Class 150 to 900
- Build-in p (option) + T sensor
- Modular electronics
- Graphic touch screen
- OIML R137-1 2012 accuracy class 0.5 approved
- ISO 17089-1:2010 approved
- AGA 9 compliant
- MID approved
- ATEX / IECEx / FM / CSA approved
Unique (Patented) Path Arrangement

- Patented 8-path configuration, fully symmetrical layout of two swirl paths with double reflection and six direct paths
- Highest level of flow profile recognition makes it less sensitive to installation effects
- Meets the ISO17089-1, AGA9 and OIML R137 (accuracy class 0.5) 2012 requirements
- Measurement of swirl component (double reflecting paths)
- The ultrasonic signal ‘collects’ more gas velocity information when traveling longer, and at different positions, through the gas
- Flow profile detection with swirl and asymmetry measurement
- Pipe wall condition monitoring
- First to detect liquid formation
Full Titanium Transducers

- Fully encapsulated intrinsic safe titanium transducers
- Nominal frequency 200 kHz
- Compact design
 - Overall length 65/xx mm
 - Diameter (hole) 18 mm
- High Signal to Noise Ratio (SNR)
- Operational Pressure 0-350 barg*
- Operational Temperature -50 to +80 deg C
- High-grade titanium for enhanced corrosion resistance
- Smooth surface to minimize contamination
- Self draining orientation
- Plug-n-Play field replaceable

*min. pressure depending from size and gas composition
Signal Processing Unit (SPU) Series 6

- Enhanced interface possibilities
 - Ethernet/Serial
 - Freely definable Modbus communication (slave/client and master/server)
- Embedded archives
 - Events
 - Hourly/daily consumptions
- Graphical touch display
- Built-in web server for remote front panel
- Freely definable user displays
- Second (multiple) language support
- Intergrated Flow computer (IFC) option
- Separate compartment for the terminal connections
SonicExplorer® for Configuration, Diagnostics and Health monitoring

- User-friendly software
- Simulator for training
- Intuitive & Configurable Dashboards
- Multi Meter data base
- Configuration, setting and documentation
- Extended Diagnostics
- Health reporting
- Actual signal analysis
- Customer service pack (automated collection of relevant data for off-site analysis)
- Industrial Cyber Security
 - Runs on the latest OS
 - Multilevel password protection preventing unauthorized access
Q.Sonic$^{\text{max}}$ – Installation (Accuracy Class 0.5)

Designed in the lab to perform in the realities of the field. Manifolds, elbows, reducers, short inlets and other elements all have a significant effect on the profile of the gas flow.

Without flow conditioner: $5D - \text{Q.Sonic}^{\text{max}} - 3D$

(mild disturbance)

With flow conditioner: $(5D) - \text{Flow Conditioner CPA}50E - 5D - \text{Q.Sonic}^{\text{max}} - 3D$
Type testing

Perturbation test @ TCC

![Image of a testing setup]

Table B.1 Piping configurations for flow disturbances

<table>
<thead>
<tr>
<th>Test</th>
<th>Test conditions</th>
<th>Remarks</th>
<th>Turbine</th>
<th>Ultrasonic</th>
<th>Thermal</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Reference conditions</td>
<td>approx. 80 D straight line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>approx. 10 D straight line (see Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>A single 90° bend</td>
<td>radius elbow: 1.5 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Double out-of-plane bend</td>
<td>rotating right; radius elbows: 1.5 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Double out-of-plane bend</td>
<td>rotating left; radius elbows: 1.5 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>Expander</td>
<td>one step difference of the pipe diameter is applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Reducer</td>
<td>angle of expansion/reduction part: ≤ 15°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Diameter step on the upstream flange</td>
<td>approx. +3 % and −3 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Half pipe area plate</td>
<td>image shows first bend in piping and mounting of half-moon plate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MPE Class 1.0 vs 0.5 during type testing

Accuracy class 1.0 ± 0,33% \(Q_t\) to \(Q_{\text{max}}\)

Accuracy class 0.5 ± 0,16% \(Q_t\) to \(Q_{\text{max}}\)

Error %

Gas velocity m/s

Error %

Gas velocity m/s
Flow disturbance test results

Class 0.5 limit

Deviation to Baseline (%)
The Q.Sonicmax showed excellent measurement behavior during the complete testing. The shift compared to the reference conditions (baseline with 80D inlet) at the different flow disturbances is <0.1%. All errors were well within the accuracy limits of a class 0.5 (0.167%).
What is the benefit for the end user

How Honeywell creates value
• No compromise on OIML accuracy class 0.5

Benefits
• First USM that maintains the lowest uncertainty due to installation effect in all situations (0.17%), no exclusions from the standard or restricted on the flow rate to be class 0.5 compliant

Results
• Reduced uncertainty of 0.08% with HON solution vs. other USMs could correlate to $9,360 monthly or $112,320 annual savings...when considering a daily throughput of 100 MMSCFD at $3.90 MCF