REAL TIME PREDICTIVE ANALYTICS AND CORROSION MANAGEMENT WITH PREDICT®-RT
Speaker Bio

• Honeywell Connected Plant
 EMEA Customer Services Leader
 Honeywell Kft – Hungary

• Career Profile
 - Spent 15 years in the Automation Industry
 - Joined Honeywell in July, 2008 from GE Energy Optimization and Control Division
 - Career spans across the automation industry, holding various positions from Project Engineer, Lead Engineer, Project Manager, Senior Project Manager, Country Operation Manager, EMEA Advanced Solutions Engineering Services Operation Leader.
 - Graduated Industrial Process Automation engineer from the Budapest Technical College.
Outline

• Why is process corrosion management critical?
• What is Predict-RT?
• A paradigm shift: Making corrosion visible, relevant
• Predict-RT: Functionality, Overview
• Honeywell Connected: Real-Time Predictive Intelligence
• Conclusions
Honeywell Corrosion Solutions – Innovation Leader

Modeling Applications

THE NEW SOLUTION
REAL TIME PREDICTION

Joint Industry Programs

- Aggregated Funding ($2M to $4M)
- 2 to 3 Years Research Effort
- +30M$ IP developed

Solution Portfolio

Real Time Monitoring

- Predict®-Crude
- Predict®-SW
- Predict®-Amine
- Predict®-SA

Laboratory Testing

- Socrates™
- Predict®-Pipe
- Predict®-O&G
- Predict®-Amine

SmartCET® Technology

$25M facility for standardized and modified corrosion testing per ISO, ASTM, NACE, EFC, etc.
Corrosion…The *Cholesterol* in Process Applications

Need to reduce incidents, increase reliability, and extend equipment life

Pro-actively understand and correlate process to potential damage - critical to asset integrity
Corrosion is Expensive….

Conventional Reactive Corrosion Management Methods.. Don’t really work

Inspection
- Process corrosion quantification a complex task
- In Line Inspection (Smart Pigging) – Cost intensive
- Direct Assessment (Digging) – Cost intensive and loss of production

“Fix it when it breaks”
- Loss of production and fatalities when they can be avoided

Chemical Injection
- Inhibitor vendors driving the process “fox guarding the hen house” situation

Corrosion Coupons
- 90% of corrosion damage is caused during 10% of operational time!
- Corrosion is found after it happens
Real-Time Corrosion Prediction, Monitoring & Management

A real time software sensor
- Track damage and enforce appropriate limits
- **Identify** critical areas as operating conditions change
- Build a **complete** corrosion picture in combination with hardware
- **Adjust** your inspection schedule to address critical areas

“Mitigate before it can break”
- Predict **when** wall thicknesses will reach **critical** levels
- **Plan** your maintenance before it becomes an emergency

Minimize Chemical Costs
- **Visibility** means you can use chemicals effectively
- Optimal use translates into lower costs

Optimize process management with real time analytics
- Link corrosion and damage to relevant process parameters
- Know how you can optimize your process

Knowing where you are headed......predictive and proactive
Current Situation……..

Corrosion is “Invisible” to Operations
Making Corrosion Visible to Operations
Making Corrosion **Relevant** to Operations

Operate Plant → Present Corrosion Rate to Operators via Control System → Online Corrosion Rate Prediction → Real-time Corrosion Rate

Real-time Corrosion Rate → Correlate Corrosion Rates to process variables → Optimize operating variables to minimize Corrosion rates → Present Corrosion Rate to Operators via Control System → Online Corrosion Rate Prediction → Real-time Corrosion Rate

Operate Plant
Making Corrosion **Actionable** by Operations

- Operate Plant
- Online Corrosion Rate Prediction
- Generate Alarms & Alerts
- Present Corrosion Rate to Operators via Control System
- Correlate Corrosion Rates to process variables
- Optimize operating variables to minimize Corrosion rates
- Real-time Corrosion Rate
- Optimize operating variables to minimize Corrosion rates
- Generate Alarms & Alerts
- Present Corrosion Rate to Operators via Control System
- Correlate Corrosion Rates to process variables
- Real-time Corrosion Rate
- Optimize operating variables to minimize Corrosion rates
- Generate Alarms & Alerts
- Present Corrosion Rate to Operators via Control System
- Correlate Corrosion Rates to process variables
- Real-time Corrosion Rate
- Optimize operating variables to minimize Corrosion rates
- Generate Alarms & Alerts
- Present Corrosion Rate to Operators via Control System
- Correlate Corrosion Rates to process variables
- Rate OK?
Real-Time Prediction Solutions

Corrosion is now “visible” to everyone and “actionable” by operations / management
How Does It Work?
NOT GUESSING, IT IS SCIENCE!

• Predict-RT is **NOT based on theoretical speculations**
• Predict-RT Database comprises **REAL corrosion data**
• Prediction algorithms are based on **+15 years research** data developed during Honeywell Joint Industry Programs
• Predict-RT represents the **most recent knowledge** about corrosion processes
• Unique Predict **IP worth +30$M** is available for our customers with support from Honeywell Corrosion Center of Excellence (CoE)
• **20+ major World-Refining** companies are using various Predict Models (off-line/on-line)
Accurate Prediction Models
- Offline corrosion prediction and material selection models
 - Predict-SW 3.0
 - Predict-Amine 4.0
 - Predict-Crude 2.0
 - Predict-SA 2.0
 - Predict-CDU-OH

Real-Time Corrosion Prediction
- Corrosion prediction in real-time is possible
- Immediate mitigation actions can be planned
- Immediate quantification of material damage is possible
- Enabled by **Predict-RT**

Process Data
- Process data available in plant historian via DCS
- Operating parameters
- Design Variables
- Material of Construction
- Service Life
- Laboratory Data (LIMS)

2017 Hydrocarbon Processing Innovation Award Winner
Corrosion prediction – “dynamic” mode

Set of Parameters

Temperature
Flow rate
Pipe ID
Pipe configuration
MOC
TAN/NAT

Prediction Engine Level 3.5

KPI Dashboard

Level 4 Network

Level 3 Network

Level 2 Network

Inspection / RBI server
Lab server
Integrity server

Operator Console

Control Systems DCS

4-20mA / HART / Modbus

Super LPR
High Res ER
High Res UT

Temperature
Flow rate
Pipe ID
Pipe configuration
MOC
TAN/NAT
Simple, Visible, Connected

PREDICT-RT IS THE INDUSTRY’S FIRST EVER SOFTWARE SENSOR FOR CORROSION

<table>
<thead>
<tr>
<th>Point Name</th>
<th>Description</th>
<th>Remaining Corrosion Allowance (mm)</th>
<th>Next Replacement Date</th>
<th>Max Corrosion Rate (mm/yr)</th>
<th>Corrosion Rate (10Y) (mm/yr)</th>
<th>Corrosion Rate (70Y) (mm/yr)</th>
<th>Corrosion Rate (100Y) (mm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>03CDUCF02</td>
<td>VAC Crude Furnace Outlet</td>
<td>3.8246</td>
<td>01-01-2020</td>
<td>1.3719</td>
<td>1.4531</td>
<td>1.4229</td>
<td>1.3585</td>
</tr>
<tr>
<td>03CDUVAC04</td>
<td>VAC Column Residuals</td>
<td>3.8269</td>
<td>01-01-2020</td>
<td>1.3727</td>
<td>1.1308</td>
<td>1.1342</td>
<td>1.2029</td>
</tr>
<tr>
<td>03CDUATM02</td>
<td>ATM Column Naphtha</td>
<td>3.8447</td>
<td>01-01-2020</td>
<td>1.3791</td>
<td>0.3068</td>
<td>0.3132</td>
<td>0.3040</td>
</tr>
<tr>
<td>03CDUVAC01</td>
<td>VAC Column LVGO</td>
<td>3.8438</td>
<td>01-01-2020</td>
<td>1.3788</td>
<td>0.4546</td>
<td>0.4255</td>
<td>0.3762</td>
</tr>
<tr>
<td>03CDUATM03</td>
<td>ATM Column Diesel</td>
<td>3.8417</td>
<td>01-01-2020</td>
<td>1.3780</td>
<td>0.4878</td>
<td>0.4366</td>
<td>0.4186</td>
</tr>
<tr>
<td>03CDUATM01</td>
<td>ATM Column Lights</td>
<td>3.8470</td>
<td>01-01-2020</td>
<td>1.3799</td>
<td>0.1721</td>
<td>0.1742</td>
<td>0.1619</td>
</tr>
<tr>
<td>03CDUCF01</td>
<td>ATM Crude Furnace Outlet</td>
<td>3.8267</td>
<td>01-01-2020</td>
<td>1.3726</td>
<td>1.2144</td>
<td>1.1327</td>
<td>1.2239</td>
</tr>
<tr>
<td>03CDUVAC03</td>
<td>VAC Column HVGO</td>
<td>3.8332</td>
<td>01-01-2020</td>
<td>1.3750</td>
<td>0.6664</td>
<td>0.7904</td>
<td>0.9303</td>
</tr>
<tr>
<td>03CDUVAC02</td>
<td>VAC Column MGO</td>
<td>3.8401</td>
<td>01-01-2020</td>
<td>1.3775</td>
<td>0.5057</td>
<td>0.5360</td>
<td>0.5350</td>
</tr>
<tr>
<td>03CDUATM04</td>
<td>ATM Column AGO</td>
<td>3.8382</td>
<td>01-01-2020</td>
<td>1.3768</td>
<td>0.6274</td>
<td>0.6122</td>
<td>0.6193</td>
</tr>
<tr>
<td>03CDUATM05</td>
<td>ATM Column Reduced Crude</td>
<td>3.8344</td>
<td>01-01-2020</td>
<td>1.3754</td>
<td>0.7658</td>
<td>0.7517</td>
<td>0.8340</td>
</tr>
</tbody>
</table>
Real Time Analytics…Monitor Rates at Multiple Locations

Predict-RT provides a real time quantified picture of unit and piping integrity; transforming your data into knowledge.
Correlate Rates with Operating Conditions

Predict-RT provides the ability to safely process opportunity crudes, better manage your corrosion costs and improve operating margins.
Evaluate Multiple Materials for Better Asset Life Assessment

Predict-RT translates to extended asset life and better manage your asset integrity and corrosion costs.
Optimized Feedstock Selection

North American Independent Refinery (189,000 bpd capacity)

Predict-RT implemented to monitor the 30 day rolling-average TAN envelope vs 30 day fixed TAN envelope – *providing visibility into the process* – allowing Refiner to purchase more economical Crudes for processing.

<table>
<thead>
<tr>
<th>Business Opportunity</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Process additional DCO cargo (600 kb/cargo)</td>
<td></td>
</tr>
<tr>
<td>• $3/bbl incentive to the next heavy barrel alternative</td>
<td></td>
</tr>
<tr>
<td>• Shipment incentive of $1,800,000/cargo</td>
<td></td>
</tr>
<tr>
<td>• Four (4) additional DCO cargos/yr. processed safely</td>
<td></td>
</tr>
<tr>
<td>• Annual saving of $7,200,000</td>
<td></td>
</tr>
<tr>
<td>• Payout in less than 1 QTR</td>
<td></td>
</tr>
<tr>
<td>• Plans for solution rollout to additional refineries (900,000 bpd network capacity)</td>
<td></td>
</tr>
</tbody>
</table>

Predict-RT allows for crude slate flexibility while maintaining a robust mechanical integrity program for crude and other downstream units.
Predictive Analytics for Refinery Integrity Management

Leading North American Refiner & Distributor (1.1M bpd capacity)
Predict-Crude and Predict-SW implemented to support the largest US refinery’s integrity management program

<table>
<thead>
<tr>
<th>Business Opportunity</th>
<th>Solution</th>
</tr>
</thead>
</table>
| • Better manage corrosion rates for complex crude throughput
• Provide crude corrosion prediction due to naphthenic acid and sulfidic corrosion
• Provide accurate sour water prediction and modeling to ensure safe operations | • Predict software suite for refineries encapsulates comprehensive data from thousands of laboratory simulations
• Refining industry’s first-of-its-kind predictive, analytical model designed to convert process data into predictive intelligence, facilitating enhanced safety and reliability while driving optimized unit operations |

Predict corrosion suite predictive analytics for enhanced reliability and integrity management.
Enhanced Refinery Safety and Productivity

Oil & Gas Industry leader and Member of Honeywell Refinery JIP

Predict-SW implemented across refineries worldwide to standardize corrosion prediction and material selection

<table>
<thead>
<tr>
<th>Business Opportunity</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Deploy a global standardize solution to support NH4HS corrosion programs</td>
<td>• Predict-SW is the only solution that can help guarantee against NH4HS corrosion in refinery operations</td>
</tr>
<tr>
<td>• Increase engineering productivity across corrosion and integrity management programs</td>
<td>• Over 60 global users of the solution across different locations and continents</td>
</tr>
</tbody>
</table>

Predict corrosion suite enables accurate corrosion prediction and material selection for improved decision making.
Predict-RT in Real-Time Corrosion Prediction & Management

Anticipate
Predict corrosion damage and avoid unplanned shut downs

Understand
Correlate process changes to potential corrosion consequences

Manage
Flexible operations means improved reliability without a corresponding increase in costs

Deliver
Enhanced throughput and increased profits

Scalability
Monitor and expand corrosion visibility as needed

Real-Time
Visibility into your asset integrity program for better management of risk and inspection

Improved Margins
Optimize feedstock selection and processing opportunity crudes for superior ROI

Transforming Process Data into Corrosion *Intelligence* for Enhanced Profitability and Reliability

Preventing Corrosion Is Knowing When and Where It Occurs
Asset Integrity - Predictive Maintenance/Reliability Framework

Data Collaboration
Asset Integrity Dashboard

- Corrosion damage quantification & ID of critical zones
- Real-time monitoring of static & rotating equipment
- Dynamic IOW Management
- Deviation Management and Reporting
- Prediction of current state of equipment

Safety → Predictive Maintenance → Reliability → Profitability
Conclusions / Path Forward

- Real Time Corrosion Management is a complex task
 - Want more details? Please contact Honeywell Corrosion CoE
 predict@Honeywell.com
- Predict-RT facilitates throughput flexibility, process optimization and enhanced safety / reliability
 - Request a demo download to see how Predict-RT makes the invisible visible
- Wish to implement the first ever predictive software sensor for corrosion?
 - Please contact your Honeywell Account Manager
Joint Industry Programs (JIP)

- **Typical Sponsors**
 - Operating Companies
 - Chemicals Providers
 - Service Providers
 - Engineering & Design Companies
- **Aggregated Funding ($2M to $4M)**
- **2 to 3 Years Research Effort**
- **Refinery JIP**
 - $21M+ Funding
 - 20+ Sponsor Companies

Specialized corrosion engineering and research services

Ongoing Programs:
- CDU Overhead
- Nap Acid Corrosion Phase II
- H₂S Limits for 13 Cr

In preparation
- CUI JIP
- Raman JIP
JIPs since 2000

Refinery Joint Industry Programs

- Crude Corrosivity Phase I JIP
- Crude Corrosivity Phase II JIP
- Crude Distillation Overhead Phase I JIP
- Hydrogen Induced Cracking (HIC) & SSC JIP – Steels
- Lean Amine JIP
- Rich Amine Phase I JIP
- Rich Amine Phase II JIP
- Sour Water Phase I JIP
- Sour Water Phase II JIP
- Sour Water Phase III JIP
- Sulfuric Acid Alkylation JIP

O&G Production Joint Industry Programs

- 13Cr MSS JIP
- CO₂/H₂S Corrosivity JIP – Carbon Steel
- Sulfide Stress Cracking (SSC) JIP – CRAs
- Titanium Alloy JIP

+30MUSD DATA DEVELOPED DURING JIP PROGRAM
Sponsors for selected JIPs

CDU Overhead JIP Phase 1
- Crude Corrosivity JIP Phase 1&2
 - Corrosion in OVHD system
 - Nap acids and HT sulfidation
 - (2011-now)
 - (2006 – now/ongoing Phase 2)

<table>
<thead>
<tr>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevron Energy Technology Co.</td>
</tr>
<tr>
<td>BP</td>
</tr>
<tr>
<td>FHR</td>
</tr>
<tr>
<td>ECOPETROL</td>
</tr>
<tr>
<td>MARATHON OIL</td>
</tr>
<tr>
<td>REPSOL</td>
</tr>
<tr>
<td>Petrobras</td>
</tr>
<tr>
<td>Reliance</td>
</tr>
<tr>
<td>SK Innovation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker Petrolite (1)</td>
</tr>
<tr>
<td>BP (1&2)</td>
</tr>
<tr>
<td>Chevron (1&2)</td>
</tr>
<tr>
<td>ExxonMobil (1)</td>
</tr>
<tr>
<td>Flint Hills Resources (1&2)</td>
</tr>
<tr>
<td>Idemitsu (1)</td>
</tr>
<tr>
<td>IOCL (1&2)</td>
</tr>
<tr>
<td>Lyondell (1)</td>
</tr>
<tr>
<td>Marathon (1&2)</td>
</tr>
<tr>
<td>Nalco (1)</td>
</tr>
<tr>
<td>Petrobras (1&2)</td>
</tr>
<tr>
<td>Petronas (1)</td>
</tr>
<tr>
<td>Reliance (1&2)</td>
</tr>
<tr>
<td>REPSOL (2)</td>
</tr>
<tr>
<td>Shell / SGS (1&2)</td>
</tr>
<tr>
<td>StatoilHydro (1)</td>
</tr>
<tr>
<td>Syncrude (1)</td>
</tr>
<tr>
<td>TOTAL (2)</td>
</tr>
<tr>
<td>UOP (1)</td>
</tr>
</tbody>
</table>

Rich & Lean Amine JIP
- Corrosion in Amine Unit
- (2003-2011)

<table>
<thead>
<tr>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG – International (L1, R1&2)</td>
</tr>
<tr>
<td>BP (R1&2)</td>
</tr>
<tr>
<td>ExxonMobil Research and Engineering (L1, R1&2)</td>
</tr>
<tr>
<td>Flint Hills Resources, LP (L1, R1&2)</td>
</tr>
<tr>
<td>Fluor, Inc. (L1, R1&2)</td>
</tr>
<tr>
<td>Idemitsu Kosan Co., Ltd. (L1, R2)</td>
</tr>
<tr>
<td>Marathon Petroleum Co. (L1, R2)</td>
</tr>
<tr>
<td>Chevron Energy Technology (L1, R1)</td>
</tr>
<tr>
<td>GASCO (L1)</td>
</tr>
<tr>
<td>Syncrude Canada Ltd (L1, R1)</td>
</tr>
<tr>
<td>ConocoPhillips, Inc (R1)</td>
</tr>
<tr>
<td>Huntsman Chemicals (R1)</td>
</tr>
<tr>
<td>Petrobras (R1)</td>
</tr>
<tr>
<td>Saudi Aramco (R1)</td>
</tr>
<tr>
<td>Shell Global Solutions (US) Inc. (R1)</td>
</tr>
</tbody>
</table>

Honeywell Proprietary - © 2017 by Honeywell International Inc. All rights reserved.
Predict Amine RT – display example

- **Real Time Corrosion Assessment** in key areas:
 - Reboiler loop
 - Hot Lean Amine
 - Stripper OVHD

- Number of additional locations where corrosion may be an issue

- Immediate corrosion picture on whole Amine Stripper Loop
Predict Amine RT (real time) – KPI example

<table>
<thead>
<tr>
<th>KPI</th>
<th>30 Days (Corrosion Rate, mmyp)</th>
<th>Acq. Limit (mmyp)</th>
<th>Inst. CR (mmyp)</th>
<th>30 Days Avg. CR (mmyp)</th>
<th>Corrosion Sensor Reading (mmyp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Air Cooler (Com. Header)</td>
<td>0.25</td>
<td>0.05</td>
<td>0.06</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Inlet Amine Stripper HS</td>
<td>0.25</td>
<td>0.03</td>
<td>0.03</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Inlet Stripper Rec. Elbow</td>
<td>0.25</td>
<td>0.36</td>
<td>0.32</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Out Amine Stripper (Overhead)</td>
<td>0.25</td>
<td>0.07</td>
<td>0.06</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Outlet Air Cooler (CH)</td>
<td>0.25</td>
<td>0.21</td>
<td>0.20</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Outlet Reboiler - Elbow</td>
<td>0.25</td>
<td>0.03</td>
<td>0.06</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Outlet Reboiler - VS</td>
<td>0.25</td>
<td>0.03</td>
<td>0.06</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Outlet of Air Cooler VS</td>
<td>0.25</td>
<td>0.20</td>
<td>0.19</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Reducer Section</td>
<td>0.25</td>
<td>0.03</td>
<td>0.03</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Rich-Lean Exch. Inlet</td>
<td>0.25</td>
<td>0.03</td>
<td>0.03</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Rich-Lean Exch. Out. Elbow</td>
<td>0.25</td>
<td>0.03</td>
<td>0.03</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Rich-Lean Exch. Out. VS</td>
<td>0.25</td>
<td>0.03</td>
<td>0.03</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>
Predict-RT Amine Unit: Modeling Points (real case study)