Panel Mounting

1. Insert instrument into the panel cutout.
2. Hold front bezel firmly (without pressing on the display/screen) to enable front panel mounting clamp. Push the clamp down, using a tool if necessary, until gasket is firmly in position.

Gasket

Ratchets

1. Handle both direct and alternating current.

NOTE: For an effective IP65 seal against dust and moisture, ensure gasket is well compressed against the panel, with the 4 tongues tightened to the 4 ratchets.

Rear Terminal Wiring

1. For panels, to ensure that the instrument has the correct compliance protection and the correct setup for the power input, an IEC60947-1 & IEC60947-3 compatible isolation switch should be fitted close to the unit, in easy reach of the operator, and is appropriately marked.

CAUTION: The wiring diagrams show all possible option combinations. The connections required depend on the options & modules fitted.

Use single stranded (1.2mm / AWG18 max size) copper wire, except for thermocouple inputs, where the correct thermocouple or compensating cable and connections should be used.

NOTE: Plug-in modules are automatically detected at power up.

1. INSTALLATION

CAUTION: Installation should only be performed by technically competent personnel. It is the responsibility of the installer engineer to ensure that the installation and wiring of the instrument meets the electrical installation & safety must be observed — e.g. U.S. National Electrical Code (NEC) or International Electrical Code (IEC). Ensure that the product is in a manner not specified by the manufacturer.

Installing Plug-In Modules

Plug-In Modules

1. Board Mounting Straut (x8) & Front Removal Latch (x1)
2. Plug-In Module A
3. Universal Input & Base Option 2 Board
4. Plug-In Module 3
5. Power Supply Board
6. Plug-In Module 2
7. USB/Digital Input C Option 1 Board

To access the plug-in modules, first remove the instrument from the housing.

1. Pull front out to engage Front Latch. This prevents removal without a tool.
2. Press latch with screwdriver through top hole. Remove front from case.

NOTE: If the plastic bezel is pulled out of shape with pliers, it will not go back into place.

3. Detach main boards from the upper and lower mounting lugs.
4. Pull required modules into the correct connectors, as shown below.
5. Ensure the module tongues in the connecting slots are fully engaged.
6. Hold the Power and Input boards together while relaxing on their mountings and press board forward in sequence to the Display board.
7. Replace the instrument by aligning the boards with the guides in the housing.

NOTE: The operator is responsible for maintaining the 1-Loop Operation.

NOTE: Automatic tuning will not engage if either proportional band is at ±5% of span.

1-Loop Operation Normal Power Output Level

Power Graph

NOTE: Setpoint range, alarm range and limit labels are shown. The Setpoint display for each loop can be turned ON or OFF in Manual mode.

NOTE: The recommended that you only enable operator mode screens if they are important for daily operation. Consider using Supervisor Mode (see section 2) for that you want to limit access to.

4. AUTOMATIC TUNING

CAUTION: To automatically optimise the PID tuning (tuning in VMD mode) for the process, you can only enable tuning in a single loop for easier configuration.

Pre-tune performs a single start-up tuning test. It stops when the test has reached a stable steady state with a maximum output value of ±25% of the loop span. Tuning summary is displayed.

Pre-tune PID Set 1

NOTE: Automatic tuning will not engage if either proportional band is at ±5% of span.

On/off control is replaced with the default proportional band if gain scheduling is turned on.

5. PID SETS & GAIN SCHEDULING

NOTE: If gain scheduling is turned on, all other proportional bands are set to Off/On control. Also, pre-tune (including and auto-tune pre-tune) are disabled. If gain scheduling is active, a profile is running, or the Process Variable is <3% of span from setpoint.

Common contrasts between on/off, PI and PID control include:

- On/off has a square wave output
- PI control has limited ability to control overshoot
- PID control has the best overall performance

CAUTION: The high performance configuration can be used for very precise control applications, where the high performance configuration has a better output response than the standard configuration.

CAUTION: The high performance configuration can be used for very precise control applications, where the high performance configuration has a better output response than the standard configuration.

CAUTION: The high performance configuration can be used for very precise control applications, where the high performance configuration has a better output response than the standard configuration.

CAUTION: The high performance configuration can be used for very precise control applications, where the high performance configuration has a better output response than the standard configuration.
Applications with long time lags (e.g. with heat or more capacities such as heated or cold water), a dual input feature (in the cascade control mode) makes use of the process in two or more cascaded loops consisting of a Master and Slave(s) acting as SCB. Ideally, the slave loop’s natural response time should be at least 5 times faster than the Master’s.

The Master loop compares the process temperature with the desired setpoint and its correcting variable (the difference between the two). The first feedback signal to the slove loop is the “raw” process variable, while the second feedback signal is the PID output from the slave’s process input and the controlling actuator is adjusted accordingly.

Example

```
\[ \text{Master PID output} = \frac{\text{Process variable} - \text{Setpoint}}{\text{Gain}} \]
```

NOTE:cascade control is available on models fitted with the 2nd Universal Input. The master connects to input 1; the slave to input 2.

9. DIGITAL INPUTS

Digital inputs are driven to one of two states (active or inactive) by an applied voltage signal to the input terminals. These can be used for profile selection (see Digital Input Setup sub-menu on page 6), or where remaining inputs available for functions such as switching control and relay output. The operator is responsible for maintaining the input within safe limits.

Cascading Tuning

The user can tune manually or use the pre-tune feature (see Automatic Tuning). After leaving automatic tuning mode, the process is returned to the state selected by the slave controller.

Manual Mode

The controller can be put into manual mode (via digital inputs or menu selection), bypassing the cascade to take direct control of the slave loop’s correcting variable. Manual mode is activated from -100 to 100%. “MAX” is displayed in manual mode.

CAUTION: **Manual mode disables the cascade loop. It ignores any alarms and sets the controller into its own, followed by the master loop in combination with the manually tuned slave.**

10. REDUNDANT INPUT

The 2nd universal input is fitted; it can be used with a backup sensor so that if one fails, the instrument automatically switches to the other. In this condition, if input 1 has a signal break alarm configured it will activate, but any other input configured only to monitor status alarms will not be interrupted. The input continues to be used until the signal to input 1 is restored. The user may not switch to the another input until the 2nd input is configured for both inputs to provide notification.

NOTE: cascade control does not work with the same type, and be correctly located in the application ready to over-ride if needed. If this option is selected, the 2nd input cannot be used with VMD control unless the Derivative parameter is turned OFF.

11. VALVE MOTOR / 3-POINT STEPPING CONTROL

When using step-motor or stepping-solenoids, set the Control Mode to VMD in combination mode to enable the 3-point stepping Valve Motor Drive control algorithm. This option includes switched outputs (for position feedback) and usually requires PI (control), where the Derivative parameter is turned OFF.

Special Wiring Considerations for Valve Motor Control

Valve Motor Drive (VMD) mode offers two identical outputs to be assigned to the valve position. One to Open and one to Close the valve. These outputs can be two single relays, two tacs, two SSR drivers or one dual relay, but it is recommended to use two single relays (SPDT change-over contacts), and to interlock the wiring as shown. This prevents both motor windings from being driven at the same time, even under fault conditions.

12. CONTROL TYPE

The control type defines if a control loop has single (unidirectional) or dual (bidirectional) control output. A control has a primary output only. This can drive the process in one direction only (e.g. heating, cooling, maintaining & dehumidifying etc.). The signal is selected for VMD control which provides discrete 3-point stepping control for force the process output to one output to increase and another to decrease the process variable (see section 17).

CAUTION: These limits must be used with care. They are effectively control power limits. Do not set values that prevent proper control of the process.
15. PROFILER OPTION

The Profiler (or setpoint programmer)/feature allows the user to store up to 255 profiles. Each profile consists of one or more segments, which are connected in a loop and share a common control point. Each profile contains the values of the setpoint(s) over time, increasing, decreasing or holding their values as required.

NOTE: If this feature is fitted, the profile options are added to the Main Menu, and optionally to Operation Mode. See sections 3 & 20.

Profile Enabling

Calibration Without the Profiler option can be upgraded in the field by purchasing a licence code. To obtain the correct code you must tell your supplier the serial number of your instrument. The serial number can be found in Service & Product Information.

To enter this code, hold the

NOTE: These methods are available in calibration mode.

Simply choose Base Calibration to restore normal measured values. Re-calibration of the internal zero and span settings can be attempted by qualified personnel as it undermines the factory calibration — refer to the Full Product Manual.

Single Point Calibration

This method is used where zero is not constant across the range.

Example: If the process displays 27.8 and the instrument serial number is not required at all times then it can be

NOTE: Values are entered as negative or positive.

This example shows the effect of adding a positive Low Offset and a negative High Offset.

Calibration Low Offset

Calibration High Offset

Calibration Low Process Value

Calibration High Process Value

NOTE: Changes as near as possible to the top and bottom of your usable span to achieve maximum calibration accuracy. The bottom offset can be changed to accommodate zero errors.

Example: The effect of any error can grow past the chosen calibration points.

Multi-point Scaling

If an input is connected to a linear signal (mA, mV, VDC), multi-point scaling can be enabled for that input from the Input Configuration sub-menu, so that a non-linear signal can be linearized.

The first input under "Linear limits define the values shown when the input is at minimum and maximum values. Up to 15 breakpoints can be scaled to the displayed process value between the limits.

Enter the first scaling point (e.g. 0% of the scaled input span), and the desired display value to be shown at that input value. Next enter the second scaling point and display value, followed by the 3rd. Until all the scaling points are entered to your satisfaction, the input value will be displayed as 0%. If scaled, it is advisable to concentrate the breakpoints in the area of the range with the most non-linear behavior to get the best performance.

16. SETPOINT SOURCES

The setpoint is the target value at which the instrument attempts to maintain the process variable.

Each loop can have a Main "local" setpoint set from the keypad and Alternate setpoint. The alternate setpoint sources can be either another "local" setpoint, or a remote setpoint (RSP), set by a mA or V DC signal fed to the auxiliary or 2

NOTE: Either loop can cause the profile to auto-hold. The profile continues only when the alternate setpoint is being made via digital input from Control Configuration if enabled in Display Configuration, an operator menu can be used to select the setpoint.

Refer to the control configuration screen on page 8 for setpoint options.

NOTE: In profile control mode, the selected profile provides the active setpoint source for one or both control loops (see section 16.1). Once a new control mode is selected, the selected Main or Alternate setpoints become active again.

16. THE USB INTERFACE

The USB interface can be used to upload or download instrument settings to or from a personal computer. It can be used to upload multiple instruments or the transfer of settings to/ from the PC configuration software.

If the Data Recorder or Profiler options are fitted, recordings and profile information can be exported to a PC using the USB port.

NOTE: If this feature is fitted, a USB Menu option is added to the Main Menu as an option in section 20.

USB Memory Stick Folders & Files

When a USB stick is inserted, the instrument looks for, and if necessary creates the Device folder, followed by the RECORDER folder. A separate Log folder must be located on the USB stick using the name specified in section 16.1. The log folders can be found in these folders to a minimum.

NOTE: If the file name already exists, the data will be added to the existing folder.

NOTE: See Section 16.1 for details of adding a USB Memory Stick folder.

NOTE: The first recorder log file is named 001-0001.csv. A new file is created with the first digit incremented (e.g. 001-0002.csv, 001-0003.csv), etc. Every time the data being recorded is changed.

The last 4 digits (e.g. 001-0002.csv: 001-0003.csv, etc.) will increment until there is a file of the same name on another recorder. Then the next file will be named 002-0001.csv.

CAUTION: Do not remove the memory stick from the USB port whilst a data transfer operation is in progress. Data loss or corruption may result.

The USB Interface dialog has been designed to minimize the possibility of data loss or corruption. The dialog provides warnings to alert the user to changes that will be made to the data. The dialog will automatically close at the end of the data transfer.

Manual Record on Log, Digital Input on Log, Profile on Log, Alarm on Log

Download Recordings

Recordings can be uploaded to a memory stick using the USB port and downloaded to the PC software via the configuration port or serial communications if fitted. Recorders are capable of recording data to an unlimited number of files (this can be changed). Any data that has been set aside for download will be replaced on the next upload. The Log file name can be changed if the user wishes to.

The software dialog shows the name of the file currently being read or written to, along with the number of data points and bytes remaining to be read or written. The dialog also shows the current data rate and the total number of data points and bytes to be read or written.

NOTE: The data is only limited to 8 analogue channels, so only the first 8 will be displayed. The number of channels that can be displayed is limited by the software dialog.

Recording

The recording dialog is used to store recordings to a memory stick. The dialog has been designed to allow the user to select which files to include in the recording. The user can select one or more files and then click the "Record" button to start the recording.

The dialog shows a progress bar indicating how much of the recording has been completed. The progress bar also shows the number of bytes that have been recorded and how much data remains to be recorded.

There are several options that can be selected from the recording dialog. These include selecting only files that have been changed, or selecting only files that have been modified since the last recording.

Recording from a DCC recorder

The DCC recorder's dialog shows the status of the recording, including the number of data points recorded and the total data size. The user can select the recording options and then click the "Start" button to begin the recording.

The dialog also shows a progress bar indicating how much of the recording has been completed. The progress bar also shows the number of bytes that have been recorded and how much data remains to be recorded.

The user can select the recording options and then click the "Start" button to begin the recording.

There are several options that can be selected from the recording dialog. These include selecting only files that have been changed, or selecting only files that have been modified since the last recording.
15. SPECIFICATIONS

15.1. Overview

- **Logic Low**: Ground level.
- **Logic High**: Power level.
- **Restricted**: From inputs and other outputs.

15.2. PINOUTS

<table>
<thead>
<tr>
<th>Type</th>
<th>Range</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>2 x 20mA DC</td>
<td>Output Current</td>
</tr>
<tr>
<td>2 x 10V DC</td>
<td>Input Voltage</td>
<td></td>
</tr>
</tbody>
</table>

15.3. Connections

- **Connection**: RS232 via PC Configurator Cable to RJ11 socket under case.
- **Isolation**: Reinforced safety isolation from outputs and other inputs.

15.4. Performance

- **Resolution**: 16 bits.
- **Supply Voltage**: Negligible if non-fused.
- **Process Display**: Displays up to 5 over and 5 under span limits.

15.5. Safety

- **User Calibration**: Thermocouple & R/T, CONTR - prevents to pre-set power value.
- **Sensor Break Detection**: High & Sensor Break alarms activate.
- **Output Configuration**: Linear (4 to 20mA, 2 to 10V and 1 to 5V) - Control to pre-set power value. Low & Sensor Break alarms activate.
- **Isolation**: Reinforced safety isolation from outputs and other inputs.

15.6. Environment

- **Operating Conditions**: For Indoor Use - 1°C to 50°C, 0 to 95% Humidity. Operating Altitude <2000m above sea level.

15.7. Dimensions

- **Size**: 96 x 96mm (Front Bezel). 117mm (Depth Behind Panel).

18. COMMUNICATIONS

- **RS232**: RS232 via PC Configurator Cable to RJ11 socket under case.
- **Profile Starting**: Reinforced safety isolation from all inputs and outputs.

19. SERIAL COMMUNICATIONS

- **Temperature**: 1°C to 50°C, 0 to 95% Humidity. Operating Altitude <2000m above sea level.
- **Dimensions**: 96 x 96mm (Front Bezel). 117mm (Depth Behind Panel).
- **Panel Control**: Panel must be rigid. Maximum thickness 6.0mm (0.25inch).
- **Power Source**: 240VAC 110V, 50/60Hz, 20VA.
- **Connectivity**: USB 1.1 or 2.0 compatible. Mass Storage Class.

20. PROFILER

- **Profile Capacity**: Max 255 segments, shared by max 64 profiles
- **Segment Types**: Ramp Up/Down, Ramp Rate Up/Down*, Step, Dwell,
- **Profile Timing**: The first segment(s) begin from either the setpoint, or current reading, or time at setpoint.
- **Profile Starting**: Reinforced safety isolation from all inputs and outputs.
- **Profile Aborting**: Stop. Manual Exit or Keep Last Profile Setpoint, Use Controller Setpoint or Control Outputs Off.
- **Power Supply**: Isolated from all inputs and outputs.
- **Communication**: USB 1.1 or 2.0 compatible. Mass Storage Class.

21. AUXILIARY INPUTS

- **Input Values**: ±10 V, ±20mA, 0 to 10V, 1 to 5V.
- **Accuracy**: ±0.25% of input range ±1 LSB.
- **Sampling Rate**: 4 per second.
- **Resolution**: 16 bits.
- **Sensor Break Detection**: 4 to 20mA, 2 to 10V and 1 to 5V ranges only. Control to pre-set power value.
- **Resume Source**: Reinforced safety isolation from outputs and other inputs.
- **Input Operation**: Do not mix in both positions.

22. DIGITAL INPUTS & C

- **Selectable Digital Inputs**: 1: Digital Input A. 2: Digital Input B.
- **Logic Low**: 0 V @ 240mA. 0.6V @ 50mA.
- **Logic High**: 4 V @ 2mA. 3.4V @ 1mA.

23. DIGITAL OUTPUTS

- **Type**: Logic Level 4. 0 V @ 2mA. 3.4V @ 1mA.
- **Rating**: 25 x 2mA DC/ 5 x 25mA DC.
- **Drive Capability**: Output Voltage > 10V into 500Ω.

24. TECHNOLOGICAL DATA

- **Display**: 64 x 32 1x, with ASCII display.
- **Accuracy**: ±0.25% of input range ±1 LSB.
- **Input Function**: Input Voltage.
- **Input Range**: ±10 V, ±20mA, 0 to 10V, 1 to 5V.
- **Accuracy**: ±0.25% of input range ±1 LSB.
- **Sampling Rate**: 4 per second.
- **Resolution**: 16 bits.
- **Sensor Break Detection**: 4 to 20mA, 2 to 10V and 1 to 5V ranges only. Control to pre-set power value.
- **Resume Source**: Reinforced safety isolation from outputs and other inputs.
- **Input Operation**: Do not mix in both positions.
- **Input Voltage**: ±10 V, ±20mA, 0 to 10V, 1 to 5V.

25. AUXILIARY INPUTS

- **Supported Types**: RTD Calibration, DC Input Multi-Point, Linerization
- **Calibration**: ±1% of full range. ±0.5°C (for external CJC if enabled).
- **Resistance**: 150Ω x 10 with LN20% - 25% of rated current.
- **DC Input Multi-Point**: Up to 10 scaling values can be defined between 0.1 and 100% of input.
- **Function**: Input Voltage.
- **Range**: ±10 V, ±20mA, 0 to 10V, 1 to 5V.
- **Accuracy**: ±0.25% of input range ±1 LSB.
- **Sampling Rate**: 4 per second.
- **Resolution**: 16 bits.
- **Sensor Break Detection**: 4 to 20mA, 2 to 10V and 1 to 5V ranges only. Control to pre-set power value.
- **Drive Capability**: Reinforced safety isolation from outputs and other inputs.
- **Input Voltage**: ±10 V, ±20mA, 0 to 10V, 1 to 5V.
- **Accuracy**: ±0.25% of input range ±1 LSB.
20 SCREEN SEQUENCES

Profile Setup Menu Unlocking
- Press [Setup] from the Main Menu to enter the Setup Menu. Note: The Profile Setup name is shown in the top right of the display.

Profile Unlocking
- When the Profile Unlocking screen is displayed, press [Yes] to unlock the feature. Note: The unlocked feature will automatically be saved when the instrument is turned off and then back on. If not, press [No] to cancel.

Profile Action
- Select this profile to start a new profile. Note: Selecting this profile will also stop any existing profile.

Profile Segment
- Select this profile to join a new segment. Note: Selecting this profile will also stop any existing profile.

Profile Repeat Segment
- Select this profile to repeat a segment. Note: Selecting this profile will also stop any existing profile.

Profile End
- Select this profile to end the profile. Note: Selecting this profile will also stop any existing profile.

Profile Start/Stop
- Select this profile to start or stop a profile. Note: Selecting this profile will also stop any existing profile.

Profile Start/Stop Menu
- Select this profile to start or stop a profile. Note: Selecting this profile will also stop any existing profile.

Profile Stop/Delay Time
- Select this profile to set the stop/delay time. Note: Selecting this profile will also stop any existing profile.

Profile Recovery Method
- Select this profile to set the profile recovery method. Note: Selecting this profile will also stop any existing profile.

Profile Recovery Time
- Select this profile to set the profile recovery time. Note: Selecting this profile will also stop any existing profile.

Profile Self-Tune
- Select this profile to set the profile self-tune. Note: Selecting this profile will also stop any existing profile.

Profile Pre-Tune
- Select this profile to set the profile pre-tune. Note: Selecting this profile will also stop any existing profile.

Profile Pre-Tune Status
- Select this profile to view the profile pre-tune status. Note: Selecting this profile will also stop any existing profile.

Profile Preview Mode
- Select this profile to set the profile preview mode. Note: Selecting this profile will also stop any existing profile.
Sub-menu to setup the 1st control loop. Press [] to return to Control Configuration Menu

Control Loop 1

Operation component

Sets the control type (P, PI, PD or PID) and the type of setpoint input (Actual, Process, Analog, Master or Slave).

Standard Control

Control Mode

Selects the type of control (Automatic or Manual).

Active Setpoint

Selects the active setpoint source (Local or Not used).

Setpoint Ramp Rate

Selects the active setpoint source (Local or Not used).

Alarm Configuration

Sets the active/inactive status of the alarm.

Alarm Time

Sets the active/inactive status of the alarm.

Alarm Source

Sets the active/inactive status of the alarm.

Alarm hysteresis

Sets the active/inactive status of the alarm.

Alarm RaR

Sets the active/inactive status of the alarm.

Alarm Configuration Reminder

Sets the active/inactive status of the alarm.

Setpoint Ramp Rate

Sets the active/inactive status of the alarm.

Output component

Sets the Output Power Limit (Primary Output Power Limit) or (Secondary Output Power Limit).

Output Range

Sets the Output Range.

Output Spacing

Sets the Output Spacing.

Output Priority

Sets the Output Priority.

Display component

Sets the display format (3 digits, 4 digits, etc.) and the decimal point position.

Control Configuration

Sets the active/inactive status of the control configuration.

Control Mode

Sets the active/inactive status of the control mode.

Active Setpoint

Sets the active setpoint source (Local or Not used).

Setpoint Ramp Rate

Sets the active/inactive status of the setpoint ramp rate.

Alarm Configuration

Sets the active/inactive status of the alarm configuration.

Setpoint Ramp Rate

Sets the active/inactive status of the setpoint ramp rate.

Event Configuration

Sets the active/inactive status of the event configuration.

Event Location

Sets the active/inactive status of the event location.

Display component

Sets the display format (3 digits, 4 digits, etc.) and the decimal point position.

Control Configuration

Sets the active/inactive status of the control configuration.

Control Mode

Sets the active/inactive status of the control mode.

Active Setpoint

Sets the active setpoint source (Local or Not used).

Setpoint Ramp Rate

Sets the active/inactive status of the setpoint ramp rate.

Alarm Configuration

Sets the active/inactive status of the alarm configuration.

Setpoint Ramp Rate

Sets the active/inactive status of the setpoint ramp rate.

Event Configuration

Sets the active/inactive status of the event configuration.

Event Location

Sets the active/inactive status of the event location.

Display component

Sets the display format (3 digits, 4 digits, etc.) and the decimal point position.

Control Configuration

Sets the active/inactive status of the control configuration.

Control Mode

Sets the active/inactive status of the control mode.

Active Setpoint

Sets the active setpoint source (Local or Not used).

Setpoint Ramp Rate

Sets the active/inactive status of the setpoint ramp rate.

Alarm Configuration

Sets the active/inactive status of the alarm configuration.

Setpoint Ramp Rate

Sets the active/inactive status of the setpoint ramp rate.

Event Configuration

Sets the active/inactive status of the event configuration.

Event Location

Sets the active/inactive status of the event location.

Display component

Sets the display format (3 digits, 4 digits, etc.) and the decimal point position.

Control Configuration

Sets the active/inactive status of the control configuration.

Control Mode

Sets the active/inactive status of the control mode.

Active Setpoint

Sets the active setpoint source (Local or Not used).

Setpoint Ramp Rate

Sets the active/inactive status of the setpoint ramp rate.

Alarm Configuration

Sets the active/inactive status of the alarm configuration.

Setpoint Ramp Rate

Sets the active/inactive status of the setpoint ramp rate.

Event Configuration

Sets the active/inactive status of the event configuration.

Event Location

Sets the active/inactive status of the event location.

Display component

Sets the display format (3 digits, 4 digits, etc.) and the decimal point position.

Control Configuration

Sets the active/inactive status of the control configuration.

Control Mode

Sets the active/inactive status of the control mode.

Active Setpoint

Sets the active setpoint source (Local or Not used).

Setpoint Ramp Rate

Sets the active/inactive status of the setpoint ramp rate.

Alarm Configuration

Sets the active/inactive status of the alarm configuration.

Setpoint Ramp Rate

Sets the active/inactive status of the setpoint ramp rate.

Event Configuration

Sets the active/inactive status of the event configuration.

Event Location

Sets the active/inactive status of the event location.

Display component

Sets the display format (3 digits, 4 digits, etc.) and the decimal point position.