Disclaimer

This document contains Honeywell proprietary information. Information contained herein is to be used solely for the purpose submitted, and no part of this document or its contents shall be reproduced, published, or disclosed to a third party without the express permission of Honeywell International Sàrl.

While this information is presented in good faith and believed to be accurate, Honeywell disclaims the implied warranties of merchantability and fitness for a purpose and makes no express warranties except as may be stated in its written agreement with and for its customer.

In no event is Honeywell liable to anyone for any direct, special, or consequential damages. The information and specifications in this document are subject to change without notice.

Copyright 2017 - Honeywell International Sàrl
9 Network Planning

10 Planning EtherNet/IP implementation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Network requirements</td>
<td>58</td>
</tr>
<tr>
<td>10.2 EtherNet/IP implementation architecture and topology</td>
<td>61</td>
</tr>
<tr>
<td>10.3 Configuring the Stratix switch for EtherNet/IP integration</td>
<td>65</td>
</tr>
<tr>
<td>10.3.1 Connecting locally to the switch</td>
<td>65</td>
</tr>
<tr>
<td>10.3.2 Checking the version of the switch IOS</td>
<td>66</td>
</tr>
<tr>
<td>10.3.3 Accessing switch configuration files</td>
<td>66</td>
</tr>
<tr>
<td>10.3.4 Configuring switch interface options</td>
<td>67</td>
</tr>
<tr>
<td>10.3.5 Loading the switch configuration file</td>
<td>70</td>
</tr>
<tr>
<td>10.4 Switch Maintenance</td>
<td>72</td>
</tr>
<tr>
<td>10.5 Tofino firewall configuration</td>
<td>73</td>
</tr>
<tr>
<td>10.5.1 Software and hardware requirements for Tofino firewall configuration</td>
<td>73</td>
</tr>
<tr>
<td>10.5.2 Configuring the Tofino firewall</td>
<td>74</td>
</tr>
</tbody>
</table>

11 Network Security

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 High Security Network Architecture</td>
<td>82</td>
</tr>
<tr>
<td>11.2 Supported topologies</td>
<td>83</td>
</tr>
<tr>
<td>11.2.1 Sample FTE Network topology</td>
<td>85</td>
</tr>
<tr>
<td>11.2.2 Experion LX - PHD Integration Topologies</td>
<td>85</td>
</tr>
<tr>
<td>11.2.3 Mixed domain and workgroup topology</td>
<td>85</td>
</tr>
<tr>
<td>11.3 Connecting to the business network</td>
<td>87</td>
</tr>
<tr>
<td>11.4 The demilitarized zone</td>
<td>88</td>
</tr>
<tr>
<td>11.5 Configuring the DMZ firewall</td>
<td>89</td>
</tr>
<tr>
<td>11.5.1 Distributed system architecture</td>
<td>89</td>
</tr>
<tr>
<td>11.5.2 File shares</td>
<td>91</td>
</tr>
<tr>
<td>11.5.3 Folder shares and permissions</td>
<td>92</td>
</tr>
<tr>
<td>11.5.4 Enterprise model update</td>
<td>94</td>
</tr>
<tr>
<td>11.5.5 eServer</td>
<td>95</td>
</tr>
<tr>
<td>11.5.6 Remote access for Station and Configuration Studio</td>
<td>96</td>
</tr>
<tr>
<td>11.5.7 Experion Application Server</td>
<td>98</td>
</tr>
<tr>
<td>11.5.8 Microsoft Windows Software Update Services</td>
<td>99</td>
</tr>
<tr>
<td>11.5.9 Antivirus update server</td>
<td>100</td>
</tr>
<tr>
<td>11.5.10 PHD</td>
<td>101</td>
</tr>
<tr>
<td>11.6 Specifying communication ports for Network API clients</td>
<td>106</td>
</tr>
<tr>
<td>11.7 Allowing EMDB access between network levels</td>
<td>108</td>
</tr>
<tr>
<td>11.8 Connecting other nodes to the process control network</td>
<td>109</td>
</tr>
<tr>
<td>11.9 Securing network equipment</td>
<td>110</td>
</tr>
<tr>
<td>11.10 Domain name servers</td>
<td>111</td>
</tr>
<tr>
<td>11.11 Remote access</td>
<td>112</td>
</tr>
<tr>
<td>11.12 Dual-homed computers</td>
<td>113</td>
</tr>
<tr>
<td>11.13 Port scanning</td>
<td>114</td>
</tr>
<tr>
<td>11.14 Configuring secure communication settings</td>
<td>115</td>
</tr>
</tbody>
</table>

12 Securing Wireless Devices

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 About Experion LX wireless devices</td>
<td>118</td>
</tr>
<tr>
<td>12.2 Radio frequency survey</td>
<td>119</td>
</tr>
<tr>
<td>12.3 Configuring and securing WAPs</td>
<td>120</td>
</tr>
<tr>
<td>12.4 Connecting wireless devices</td>
<td>122</td>
</tr>
<tr>
<td>12.5 Securing the OneWireless Network</td>
<td>127</td>
</tr>
</tbody>
</table>

13 System Monitoring

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Using Microsoft Baseline Security Analyzer</td>
<td>130</td>
</tr>
<tr>
<td>13.2 Setting up and analyzing audit logs</td>
<td>131</td>
</tr>
</tbody>
</table>
13.3 Detecting network intrusion ... 133
13.4 Setting up an event response team ... 134

14 Windows Domains and Workgroups .. 135
 14.1 About domains and workgroups .. 136
 14.2 Comparing domains and workgroups .. 137
 14.3 Implementing domains and workgroups ... 138
 14.4 Inter-domain trusts ... 139

15 Securing access to the Windows operating system 141
 15.1 Windows user accounts and passwords ... 142
 15.1.1 User account policies and settings .. 142
 15.1.2 Password policies and settings .. 143
 15.2 Honeywell High Security Policy ... 145
 15.2.1 High security policy, domains, and workgroups 146
 15.2.2 Honeywell high security policy installation packages 146
 15.3 File system and registry protection ... 148
 15.3.1 File system ACLs .. 148
 15.3.2 Registry ACLs ... 149
 15.3.3 File share Security .. 149
 15.4 System services .. 150
 15.4.1 Services required by Windows operating system 150
 15.4.2 Services required by Experion LX .. 150
 15.4.3 Services required by third-party applications 150
 15.5 Other Microsoft services .. 153
 15.5.1 Internet Information Services .. 153
 15.5.2 SQL Server ... 153
 15.5.3 Windows Terminal Services ... 154
 15.5.4 Remote Access Server .. 154
 15.5.5 SMS Network Monitor ... 154
 15.6 Use the firewall on Microsoft Windows 10 Enterprise 2016 LTSB (x64) and Microsoft Windows Server 2016 Standard machines 155
 15.7 Microsoft Windows 10 Enterprise 2016 LTSB (x64) and Microsoft Windows Server 2016 Standard registry and other settings ... 156

16 Glossary ... 157
17 Notices ... 161
1 About this guide

This document contains networking and security-related information applicable to Experion LX. It provides information about the recommendations to assist you in planning, setting up, and maintaining a secure environment for your system.

Revision history

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>April 2017</td>
<td>Initial release of the document.</td>
</tr>
</tbody>
</table>
2 Introduction

This guide contains networking and security information applicable to Experion LX. It documents the recommendations to assist you in planning, setting up, and maintaining a secure environment for your system.

Related topics
“Assumptions and prerequisites” on page 10
“How to use this guide” on page 11
“Related documents” on page 12
2.1 Assumptions and prerequisites

This guide is primarily intended for engineers, system administrators, and other technical staff who are responsible for planning the configuration and maintenance of an Experion system. Therefore, it is assumed that the user must have technical knowledge and familiarity with the following:

- Microsoft Windows operating systems
- Networking systems and concepts
- Security issues and concepts

Attention

As you derive a security program for your process control system you must be aware that detailed information, if not protected, can fall into the hands of organizations that could cause harm to your control system or process operations.

Important terminology

You must be familiar with the Microsoft terms listed in the following table to understand the concepts of security and configuration.

<table>
<thead>
<tr>
<th>Microsoft terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>access control list (ACL)</td>
</tr>
<tr>
<td>access mask</td>
</tr>
<tr>
<td>access token</td>
</tr>
<tr>
<td>domain</td>
</tr>
<tr>
<td>global group</td>
</tr>
<tr>
<td>group memberships</td>
</tr>
<tr>
<td>group policy</td>
</tr>
<tr>
<td>group policy object (GPO)</td>
</tr>
<tr>
<td>local group</td>
</tr>
<tr>
<td>organizational units (OU)</td>
</tr>
<tr>
<td>permission</td>
</tr>
<tr>
<td>privilege</td>
</tr>
<tr>
<td>universal group</td>
</tr>
<tr>
<td>user account</td>
</tr>
<tr>
<td>user rights</td>
</tr>
<tr>
<td>workgroup</td>
</tr>
</tbody>
</table>

You can find the definitions for the terms listed in the table on the following Microsoft web site.

http://www.microsoft.com/resources/glossary/default.mspx
2.2 How to use this guide

If you have specific security concerns such as protecting your Experion LX system against viruses or preventing unauthorized access, refer to the section “Security Checklists” on page 13.

Alternatively, you can choose from the following list of related topics.

<table>
<thead>
<tr>
<th>For Information About</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing a security program.</td>
<td>“Developing a Security Program” on page 21</td>
</tr>
<tr>
<td>A strategy for backups and recovery.</td>
<td>“Disaster Recovery” on page 29</td>
</tr>
<tr>
<td>The physical security of your system.</td>
<td>“Physical and Environmental Considerations” on page 33</td>
</tr>
<tr>
<td>Measures for keeping security related software up to date</td>
<td>“Microsoft Security Updates and Service Packs” on page 39</td>
</tr>
<tr>
<td>Antivirus measures</td>
<td>“Virus Protection” on page 45</td>
</tr>
<tr>
<td>Network planning</td>
<td>“Network Planning” on page 55</td>
</tr>
<tr>
<td>Network port access connections through firewalls</td>
<td>“Network Security” on page 81</td>
</tr>
<tr>
<td>Securing wireless devices</td>
<td>“Securing Wireless Devices” on page 117</td>
</tr>
</tbody>
</table>
2.3 Related documents

The following documents complement this guide.

<table>
<thead>
<tr>
<th>Document</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Provides a comprehensive overview of Experion LX, including basic concepts and terminology.</td>
</tr>
<tr>
<td>Server and Client Planning Guide</td>
<td>Contains high-level planning and design topics for Experion LX servers and clients, as well as for controllers other than Process Controllers.</td>
</tr>
<tr>
<td>Software Change Notice (SCN)</td>
<td>Contains last-minute information that was not able to be included in the standard documents. It may include important details related to networking and security.</td>
</tr>
<tr>
<td>Windows Domain and Workgroup Implementation Guide</td>
<td>Provides information about installing and configuring domain controllers and Windows workgroups.</td>
</tr>
<tr>
<td>Software Installation User's Guide</td>
<td>Describes how to perform a clean install of Experion LX servers and station nodes.</td>
</tr>
<tr>
<td>Experion Mobile Access User's Guide</td>
<td>Describes planning and security considerations, installation and configuration procedures, and operating instructions for Experion Mobile Access.</td>
</tr>
</tbody>
</table>
3 Security Checklists

This chapter provides a number of checklists which help you analyze the security issues that must be considered for your site.

The checklists cover some of the main threats that may exist on a process control network and the steps that can be used to mitigate against them. They also provide an alternative way of navigating through this document, depending on your key concerns.

Related topics
“Viruses and other malicious software agents” on page 14
“Unauthorized external access” on page 15
“Unauthorized internal access” on page 16
“Accidental system change” on page 17
“Protecting Experion LX system components” on page 18
“System performance and reliability” on page 19
3.1 Viruses and other malicious software agents

This threat encompasses malicious software agents such as viruses, spy ware (trojans), and worms. The intrusion of malicious software agents can result in the following:

- Performance degradation
- Loss of system availability
- The capture, modification, or deletion of data
- Loss of prestige if the external access becomes public knowledge

Mitigation steps

<table>
<thead>
<tr>
<th>√</th>
<th>Mitigation steps</th>
<th>For more information, refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ensure that your virus protection and Microsoft security hot fixes are up to date on all nodes in your process control network and the systems connected to it.</td>
<td>“Virus Protection” on page 45</td>
</tr>
<tr>
<td></td>
<td>Ensure that there are no e-mail clients on any nodes of your process control network</td>
<td>“Prohibit email clients on the process control network” on page 53</td>
</tr>
<tr>
<td></td>
<td>Use a firewall and DMZ for the business network to process control network interface</td>
<td>“Connecting to the business network” on page 87</td>
</tr>
<tr>
<td></td>
<td>Use Honeywell's High Security Network Architecture</td>
<td>“High Security Network Architecture” on page 82</td>
</tr>
<tr>
<td></td>
<td>Lock down the nodes in your system.</td>
<td>“Honeywell High Security Policy” on page 145</td>
</tr>
</tbody>
</table>
3.2 Unauthorized external access

This threat includes intrusion into the process control system from the business network and possibly an intranet or the Internet.

Unauthorized external access can result in the following:

- Loss of system availability
- Incorrect execution of controls causing damage to the plant, or theft or contamination of product
- Loss of prestige if the external access becomes public knowledge

<table>
<thead>
<tr>
<th>✓</th>
<th>Mitigation steps</th>
<th>For more information, refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use a firewall/DMZ for the business network to process control network interface to restrict access from the business network to process control network.</td>
<td>“Connecting to the business network” on page 87</td>
</tr>
<tr>
<td></td>
<td>Set the minimum level of privilege for all accounts, and enforce a strong password policy.</td>
<td>“Windows user accounts and passwords” on page 142</td>
</tr>
<tr>
<td></td>
<td>Monitor system access.</td>
<td>“System Monitoring” on page 129</td>
</tr>
<tr>
<td></td>
<td>Use Honeywell’s High Security Network Architecture</td>
<td>“High Security Network Architecture” on page 82</td>
</tr>
<tr>
<td></td>
<td>Securing wireless devices</td>
<td>“Securing Wireless Devices” on page 117</td>
</tr>
<tr>
<td></td>
<td>Lock down the nodes in your system</td>
<td>“Honeywell High Security Policy” on page 145</td>
</tr>
<tr>
<td></td>
<td>Use the firewall on Microsoft Windows 10 Enterprise 2016 LTSE (x64) and Microsoft Windows Server 2016 Standard machines</td>
<td>“Use the firewall on Microsoft Windows 10 Enterprise 2016 LTSE (x64) and Microsoft Windows Server 2016 Standard machines” on page 155</td>
</tr>
</tbody>
</table>
3.3 Unauthorized internal access

This threat encompasses unauthorized access from systems within the process control network. This threat is the most difficult to counter since attackers may well have legitimate access to part of the system and they simply want to exceed their permitted access.

Unauthorized internal access can result in the following:

- Loss of system availability
- Incorrect execution of controls causing damage to the plant, or theft or contamination of product
- The capture, modification, or deletion of data

<table>
<thead>
<tr>
<th>Mitigation steps</th>
<th>For more information, refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure Station security.</td>
<td>“Station security”</td>
</tr>
<tr>
<td>Use physical security for process control network systems.</td>
<td>“Physical and Environmental Considerations” on page 33</td>
</tr>
<tr>
<td>Do not allow the use of unauthorized removable media (for example, CDs, floppy disks, and memory sticks) on any node in (or connected to) your Experion LX system.</td>
<td>“Protecting against unauthorized system access” on page 35</td>
</tr>
<tr>
<td>Use strong passwords on network equipment.</td>
<td>“Securing network equipment” on page 110</td>
</tr>
<tr>
<td>Monitor system access</td>
<td>“System Monitoring” on page 129</td>
</tr>
<tr>
<td>Prevent the use of unauthorized laptops on the process control network (PCN).</td>
<td>“Connecting other nodes to the process control network” on page 109</td>
</tr>
<tr>
<td>Use and enforce a strong password policy</td>
<td>“Windows user accounts and passwords” on page 142</td>
</tr>
<tr>
<td>Lock down the nodes in your system</td>
<td>“Honeywell High Security Policy” on page 145</td>
</tr>
<tr>
<td>Ensure strong access controls are in place on the file system, directory, and file shares</td>
<td>“File system and registry protection” on page 148</td>
</tr>
<tr>
<td>Securing wireless devices</td>
<td>“Securing Wireless Devices” on page 117</td>
</tr>
</tbody>
</table>
3.4 Accidental system change

This threat encompasses inadvertent changes to executables or configuration files.

Accidental system change can result in the following:
- Loss of system availability
- Loss of data

<table>
<thead>
<tr>
<th>Mitigation steps</th>
<th>For more information, refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set the minimum level of privilege for all accounts, and</td>
<td>“Windows user accounts and passwords” on page 142</td>
</tr>
<tr>
<td>enforce a strong password policy.</td>
<td></td>
</tr>
<tr>
<td>Lock down the nodes in your system</td>
<td>“Honeywell High Security Policy” on page 145</td>
</tr>
<tr>
<td>Ensure strong access controls are in place on the file system, directory, and</td>
<td>“File system and registry protection” on page 148</td>
</tr>
<tr>
<td>file shares</td>
<td></td>
</tr>
</tbody>
</table>
3.5 Protecting Experion LX system components

The tables in this section list the steps you can take towards securing the following Experion LX.

- Server(s), Stations, and domain controller
- Process control network components (including routers, switches, and firewalls)

Experion server

<table>
<thead>
<tr>
<th>Protection measure</th>
<th>For more information, refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take steps to implement and enforce physical security.</td>
<td>“Physical and Environmental Considerations” on page 33</td>
</tr>
<tr>
<td>Set the minimum level of privilege for all accounts, and enforce a strong password policy.</td>
<td>“Windows user accounts and passwords” on page 142</td>
</tr>
<tr>
<td>Ensure that your virus protection and Microsoft security hot fixes are up to date on all systems.</td>
<td>“Virus Protection” on page 45</td>
</tr>
<tr>
<td>Lock down the nodes in your system</td>
<td>“Honeywell High Security Policy” on page 145</td>
</tr>
</tbody>
</table>

Experion LX Station

<table>
<thead>
<tr>
<th>Protection measure</th>
<th>For more information, refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take steps to implement and enforce physical security.</td>
<td>“Physical and Environmental Considerations” on page 33</td>
</tr>
<tr>
<td>Set the minimum level of privilege for all accounts, and enforce a strong password policy.</td>
<td>“Windows user accounts and passwords” on page 142</td>
</tr>
<tr>
<td>Ensure that your virus protection and Microsoft security hot fixes are up to date on all systems.</td>
<td>“Virus Protection” on page 45</td>
</tr>
<tr>
<td>Lock down the nodes in your system</td>
<td>“Honeywell High Security Policy” on page 145</td>
</tr>
<tr>
<td>Ensure Station security.</td>
<td>“Station security”</td>
</tr>
</tbody>
</table>

Domain controller

<table>
<thead>
<tr>
<th>Protection measure</th>
<th>For more information, refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take steps to implement and enforce physical security.</td>
<td>“Physical and Environmental Considerations” on page 33</td>
</tr>
<tr>
<td>Set the minimum level of privilege for all accounts, and enforce a strong password policy.</td>
<td>“Windows user accounts and passwords” on page 142</td>
</tr>
<tr>
<td>Ensure that your virus protection and Microsoft security hot fixes are up to date on all systems.</td>
<td>“Virus Protection” on page 45</td>
</tr>
</tbody>
</table>

Network components

<table>
<thead>
<tr>
<th>Protection measure</th>
<th>For more information, refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take steps to implement and enforce physical security.</td>
<td>“Physical and Environmental Considerations” on page 33</td>
</tr>
<tr>
<td>Set the minimum level of privilege for all accounts, and enforce a strong password policy.</td>
<td>“Windows user accounts and passwords” on page 142</td>
</tr>
</tbody>
</table>
3.6 System performance and reliability

<table>
<thead>
<tr>
<th>Protection measures</th>
<th>For more information, refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not allow port scanning within the process control network (PCN).</td>
<td>“Port scanning” on page 114</td>
</tr>
<tr>
<td>Do not automatically schedule full system antivirus scans on Experion LX nodes.</td>
<td>“Configure active antivirus scanning” on page 48</td>
</tr>
</tbody>
</table>
4 Developing a Security Program

A security program is a risk-analysis driven, life-cycle approach for securing the process control network. This chapter describes the key components of a security program.

Related topics

“Forming a security team” on page 22
“Identifying assets to be secured” on page 23
“Identifying and evaluating threats and vulnerabilities” on page 24
“Creating a mitigation plan” on page 25
“Implementing change management” on page 26
“Planning ongoing maintenance” on page 27
“Security response team” on page 28
4.1 Forming a security team

While forming a team you must perform the following:

• Define executive sponsors. It is easier to ensure the success of security procedures if you have the backing of senior management.

• Establish a cross-functional security core team consisting of representatives from:
 – Process control (for example, the process control network administrator)
 – Business applications
 – IT system administration
 – IT network administration
In this context, the term asset implies anything of value to the company. The term includes equipment, intellectual property such as historical data and algorithms, and infrastructure such as network bandwidth and computing power.

Consider the following while identifying assets that are at risk.

- People, for example, your employees and the broader community to which they and your enterprise belong.
- Equipment and assets, for example:
 - Control system equipment
 - Plant equipment: network equipment (routers, switches, firewalls) and ancillary items used to build the system
 - Network configuration information (such as routing tables and ACLs)
 - Intangible assets such as bandwidth and speed
 - Computer equipment
 - Information on computing equipment (databases) and other intellectual property
4.3 Identifying and evaluating threats and vulnerabilities

You must consider the potential within your system for unauthorized access to resources or information through the use of a network, and the unauthorized manipulation and alteration of information on a network.

The following potential threats must be considered.

• People, for example, malicious users outside the company, malicious users within the company, and uninformed employees.
• Inanimate threats, for example, natural disasters (such as floods, earthquakes, fire) or malicious code such as a virus or denial of service.

The potential vulnerabilities that must be addressed in your security strategy include:

• The absence of security policies and procedures
• Inadequate physical security
• Gateways from the Internet to the corporation
• Gateways between the business LAN and process control network
• The improper management of modems
• Out-of-date virus software
• Out-of-date security patches or inadequate security configuration
• Inadequate or infrequent backups

You can also use failure mode analysis to assess the robustness of your network architecture.
4.4 Creating a mitigation plan

As part of your plan of defense you must write policies and procedures to protect your assets from threats. The policies and procedures must cover your networks, Windows nodes, and any other operating systems.

You must also perform risk assessments on your process control system equipment. A full inventory of your assets helps in identifying threats and vulnerabilities. Risk assessment helps you decide whether you can ignore, mitigate, or accept the risk.
4.5 Implementing change management

A formal change management procedure is vital for ensuring that any modifications to the process control network meet the same security requirements as the components that were included in the original asset evaluation and the associated risk assessment and mitigation plans.

Risk assessment must be performed on any change to the process control network that could affect security, including configuration changes, the addition of network components and installation of software. Changes to policies and procedures may also be required.
4.6 Planning ongoing maintenance

Constant vigilance of your security position must involve the following:

- Regular monitoring of your system.
- Regular audits of your network security configuration.
- Regular security team meetings whose role it is to stay up to date with the latest threats and with the latest technologies for dealing with security issues.
- Ongoing risk assessments as new devices are placed on the network (refer to “Implementing change management” on page 26).
- The creation of an Incident Response Team (refer to “Security response team” on page 28).

Additional security resources

You must also be proactive about security by reviewing additional security resources, for example:

<table>
<thead>
<tr>
<th>Resource</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeywell Process Solutions (HPS) web site</td>
<td>http://www.honeywellprocess.com</td>
</tr>
<tr>
<td></td>
<td>(In the Quick Links column select Security & Other Updates. Now click Microsoft Security Updates.)</td>
</tr>
<tr>
<td>Microsoft</td>
<td>http://www.microsoft.com/technet/security</td>
</tr>
<tr>
<td>National Cyber Security Partnership</td>
<td>http://www.cyberpartnership.org/</td>
</tr>
<tr>
<td>Cisco</td>
<td>http://www.cisco.com</td>
</tr>
<tr>
<td>Computer Security Institute</td>
<td>http://www.gocsi.com</td>
</tr>
<tr>
<td>document System Protection Profile - Industrial Control Systems</td>
<td></td>
</tr>
</tbody>
</table>

More detailed information on creating a security program can be found in the ISA document Integrating Electronic Security into the Manufacturing and Control System Environment, which includes a detailed life-cycle approach similar to the approach developed for safety-related system in the IEC 61508.
4.7 Security response team

The responsibilities of a security response team (SRT) might include:

• Monitoring the Microsoft and Honeywell software update sites.
• Monitoring the antivirus software updates.
• Assessing risk for each security update, antivirus update, and any other update, as it is made available.
• Determining the amount of verification required for any update and how the verification is to be performed. In extreme cases, it may be helpful to have an offline system available so that, full functionality testing is possible. This would be particularly useful where it is normal practice to install hot fixes as soon as they are announced, rather than waiting for Honeywell qualification.
• Determining when the update is to be installed. There may be times when the SRT determines that an update is so important that you cannot wait for Honeywell's verification cycle and so, you must verify and install it early on all of your systems.
• Ensuring the deployment of qualified security updates on the Experion LX servers and dedicated (control room) Station clients. Note that the corporate IT policy for updating Windows computers must be sufficient for the rotary Station and engineering computers.
• Checking that Microsoft Baseline Security Analyzer is run periodically to ensure that security updates have not been missed. For details, refer to "Using Microsoft Baseline Security Analyzer" on page 125.
• Reviewing network infrastructure patches and configuration changes that help to secure the network against the latest methods of attack.
5 Disaster Recovery

This chapter describes planning considerations for backup and restore policies and the tools that are supported for backing up and restoring your Experion LX system.

Related topics
“Formulating a disaster recovery policy” on page 30
“Backup and recovery tools for Experion LX” on page 31
5.1 Formulating a disaster recovery policy

As part of your security strategy, you must define a comprehensive backup and restore policy for disaster recovery purposes. Consider the following for formulating this policy.

• How quickly data or the system needs to be restored. This indicates the need for a redundant system, spare offline computer, or simply good file system backups.
• How frequently critical data and configuration is changing. This dictates the frequency and completeness of backups.
• The safe onsite and offsite storage of full and incremental backups.
• The safe storage of installation media, license keys, and configuration information.
• Who are responsible for backups, and the testing, storing, and restoring of backups?
5.2 Backup and recovery tools for Experion LX

To back up your Experion LX system, you will need to use the Windows Backup and Restore option.

For detailed information about backup strategies and specific instructions for backing up your Experion LX system using these tools, refer to the *Backup and Restore Guide*.
6 Physical and Environmental Considerations

Although the security issues for Experion LX are generally the same as for any IT server, the physical security of a process control network is particularly important. If the hardware is rendered inoperable, the entire system (and hence the plant) is rendered inoperable.

Related topics
“Physical location” on page 34
“Protecting against unauthorized system access” on page 35
“Control room access” on page 36
“Network and controller access” on page 37
“Reliable power” on page 38
6.1 Physical location

It is important to consider the environmental factors for addressing the security needs of your system and data. For example, if a site is dusty, you must place the server and network equipment in a filtered environment. This is particularly important if the dust is likely to be conductive or magnetic, as in the case of sites that process coal or iron. And if vibration is likely to be a problem, you must mount the server on rubber to prevent disk crashes and wiring connection problems. In addition, you must provide stable temperature and humidity for the server and network equipment, as well as, for network backup tapes and floppy disks.

A major cause of downtime in the IT world is hardware theft, either of whole computers or of individual components such as disks and memory chips. To prevent this, the computer and monitor must be chained to the furniture, and the case locked and closed.

If computers are readily accessible, and have a floppy disk or CD drive, you might also consider fitting locks to floppy and CD drives, or (in extreme cases) removing the floppy and CD drives from the computers altogether. These suggestions apply to both the main server and to the control room computers running Station.

Depending on your security needs and risks, you must also consider disabling or physically protecting the power button to prevent unauthorized use. For maximum security, the server must be placed in a locked area and the key must be protected. Network equipment must be placed in a cabinet or locked closet to protect against unauthorized access to the power, console ports, and network ports.

If you are required to connect an Experion USB dongle (security key) to a server, protect it from being removed. If the server, or control room Stations have any unused USB ports, disable them to prevent memory sticks or other uncontrolled devices from being connected to the system. Such devices may be used to introduce virus or other malware.
6.2 Protecting against unauthorized system access

External media drives can enable anyone to bypass Windows security and gain access to your system.

If there is an easy access to a computer, and it has a floppy disk or CD drive, it can be booted from an alternative operating system. This can be used to circumvent file system security, and could be used to install damaging software, or even to reformat the hard disk.

It is therefore of critical importance in relation to the nodes in your process control network that you prevent the use of all unauthorized removable devices and media such as CDs, DVDs, floppy disks, and USB memory sticks.

There are several other steps that can be taken to reduce the risk of unauthorized access, including:

• Setting the BIOS to boot only from the C drive.
• Setting a BIOS password (check that this does not prevent automatic startup).
• Physically securing the computer (for example, in a locked room or cabinet) or fitting locks to the floppy and CD drives.
• Removing (in extreme cases) the floppy and CD drives from the computer.
• Disabling USB ports and other ports capable of being used for memory sticks and other portable storage devices.
• Group policy may be used to prevent certain drive letters (floppy drive and CD drive) from being visible to Microsoft Windows Explorer. For instructions on how to do this, refer to the Microsoft article 231289 "Using Group Policy Objects to hide specified drives". Note, however, that this policy does not prevent users from using other programs to gain access to local and network drives or prevent users from viewing and changing drive characteristics by using the Disk Management snap-in.
6.3 Control room access

Providing physical security for the control room is essential to reduce the potency of many threats. Frequently, control rooms have consoles continuously logged onto the primary control server, with speed of response and continual view of the plant considered more important than secure access. The area also often contains the servers themselves, other critical computer nodes and plant controllers. Limiting those who can enter this area, using smart or magnetic identity cards, biometric readers and so on is essential. In extreme cases, it may be considered necessary to make the control room blast-proof, or to provide a second off-site emergency control room so that control can be maintained if the primary area becomes uninhabitable.
6.4 Network and controller access

Many plant controllers are intelligent programmable devices, with the ability to be manipulated through loader software running on a laptop or similar computer connected directly to them. In order to prevent unauthorized tampering, the controllers and network equipment must be physically protected in locked cabinets, and logically protected with passwords or other authentication techniques. Network cables are also vulnerable to damage or unauthorized connection. For maximum protection, cabling must be duplicated and laid in separate hardened cable runs.
6.5 Reliable power

Reliable power is essential, so you must provide an uninterruptible power supply (UPS). If the site has an emergency generator, the UPS battery life may only need to be a few seconds; however, if you rely on external power, the UPS probably needs several hours supply.

Note that where you have redundant equipment such as redundant servers or redundant switches, you must also ensure that each unit in a redundant pair is on a different UPS or power source.
7 Microsoft Security Updates and Service Packs

An important part of your overall security strategy is to set up a system for ensuring that the operating system software is kept up to date.

At the same time, it is important to bear in mind that frequent updates to critical process control system nodes can be error prone, and may, over time, destabilize your system so they should be undertaken judiciously and with care.

Related topics
“Security updates” on page 40
“Honeywell's qualification of Microsoft security updates” on page 41
“Installing service packs” on page 42
“Distributing Microsoft updates and virus definition files” on page 43
Microsoft releases a range of security updates and other operating system and software updates. Note that only Honeywell-qualified Microsoft updates are supported. Therefore, you must wait until Honeywell has validated Microsoft updates before installing them (refer to the section “Honeywell's qualification of Microsoft security updates” on page 41). It is also recommended that you implement a controlled system for the distribution of all updates (refer to the section “Distributing Microsoft updates and virus definition files”).

Timely information on security updates can be obtained by subscribing to the Microsoft Security Bulletin Summary at http://www.microsoft.com/technet/security/current.aspx

Attention

- If you have PHD nodes in your Experion LX system, you can (and must) install security updates and hot fixes on those nodes as soon as they are available.
- Before installing security updates on the critical nodes in your process control network, you should refer to Honeywell's Solution Support On-Line site (refer to the section “Honeywell's qualification of Microsoft security updates” on page 41 for instructions on navigating to the site). This site provides information on the status of qualified updates and hot fixes for Honeywell Process Solutions (HPS) products (that is, Experion LX, and Uniformance). For non-HPS products, you must refer to the supplier's security update rules.
7.2 Honeywell's qualification of Microsoft security updates

In this context, qualification means that Honeywell sells and supports the product, or has tested a product for use in conjunction with its own products or services. Honeywell qualifies Microsoft security updates and other updates for operating systems, Internet Explorer, and SQL Server products within a short period of time but generally only qualifies updates denoted as "Critical".

Contact your local Honeywell Technical Assistance Center (TAC) for Microsoft security updates, or go to the Honeywell Process Solutions (HPS) web site for a list of Microsoft security updates that have been qualified by Honeywell.

To access the Honeywell Process Solutions website

1. In a web browser, type the following URL.
 https://www.honeywellprocess.com/support
 The SUPPORT page appears, and the Search Knowledge Base tab is selected by default.
2. Select Click Here to Login in the top-right corner of the page.
 The home page appears.
3. If you are a new user, register at this website. Click Register, and follow the on-screen instructions.
4. If you are already registered, type your Account Login user name and password, and click Login.
 Your account name appears in the top-right of the page.

To download and install hotfix

- In Search Support Documentation, type hotfix.
- The hotfixes and other non-security updates are displayed. These are the latest hotfixes from Microsoft that are approved for use in Experion.

注意
- To download the latest Experion patches, refer to the spreadsheet available at the following link http://www.honeywellprocess.com/library/support/software-downloads/Experion/experion-update-matrix.zip.

- Honeywell's Microsoft Security Information web page also provides links to a number of Microsoft sites that have information related to security hot fixes.
- In any case, before implementing any updates, it is best to verify them on a non-production computer, or when the plant or building is not active, to ensure that there are no unexpected side effects.
- The following Microsoft web site is a prime source of information on current and past hot fixes.
7.3 Installing service packs

A service pack is a tested, cumulative set of all security and other updates. Service packs may also contain additional fixes for problems that have been found internally since the release of the product, and a limited number of customer-requested design changes or features.

Honeywell's qualification of Microsoft service packs

Microsoft performs full integration testing of their service packs against the operating system and their own applications. Honeywell follows that with system integration testing of the service pack which in most cases are a part of a scheduled and planned release.

Note that only Honeywell-qualified Microsoft service packs are supported, and therefore wait until Honeywell has qualified the service pack prior to your own qualification testing.

Contact your local Honeywell Technical Assistance Center (TAC) for Microsoft security updates, or go to the Honeywell Process Solutions (HPS) web site for a list of Microsoft security updates that have been qualified by Honeywell.

To access the Honeywell Process Solutions website

1. In a web browser, type the following URL.
 https://www.honeywellprocess.com/support
 The SUPPORT page appears, and the Search Knowledge Base tab is selected by default.

2. Select Click Here to Login in the top-right corner of the page.
 The home page appears.

3. If you are a new user, register at this website. Click Register, and follow the on-screen instructions.
 If you are already registered, type your Account Login user name and password, and click Login.
 Your account name appears in the top-right of the page.

To download and install hotfix

- In Search Support Documentation, type hotfix.
 The hotfixes and other non-security updates are displayed. These are the latest hotfixes from Microsoft that are approved for use in Experion.

 Attention
 - To download the latest Experion patches, refer to the spreadsheet available at the following link http://www.honeywellprocess.com/library/support/software-downloads/Experion/experion-update-matrix.zip.

 - In any case you must verify service packs on a non-production computer, or when the plant or building is not active, to ensure that there are no unexpected side effects.
7.4 Distributing Microsoft updates and virus definition files

It is important to install Microsoft security updates and updates to virus definition files on all nodes in your Experion system and the systems connected to it.

It is, however, not best practice to distribute Microsoft security updates and updates to virus definition files directly from the business network to nodes on the process control network as this is contrary to the goal of minimizing direct communication between nodes on these networks. Honeywell therefore recommends that an update manager and an antivirus server be located in the DMZ (refer to “The demilitarized zone” on page 88). Both roles can be performed by a single server. Honeywell provides a service to design and configure nodes in a DMZ: contact Honeywell Network Services on 1-800-822-7673 (USA) or +1 602-313-5558 (outside the USA).

Implementing a Microsoft update and antivirus management system that is dedicated to the process control network helps to ensure more controlled and secure updates, which sites can also tailor for the unique needs of their particular process control environment. It also helps address the issues that arise when an antivirus product that is supported by the process control equipment vendor is not the same as the antivirus product supported by the corporate IT department.

⚠️ Attention

Honeywell qualifies Microsoft security updates and other updates. It is strongly recommended that Microsoft updates are not implemented until this qualification has been carried out (refer to “Honeywell's qualification of Microsoft security updates” on page 41 and Honeywell's qualification of Microsoft service packs).
8 Virus Protection

Related topics
“Choose supported antivirus software” on page 46
“Installing antivirus software on process control nodes” on page 47
“Configure active antivirus scanning” on page 48
“Tune the virus scanning for system performance” on page 49
“Ensure frequent updates to antivirus signature files” on page 51
“Test the deployment of antivirus signature files” on page 52
“Prohibit email clients on the process control network” on page 53
“Spyware” on page 54
8.1 Choose supported antivirus software

Honeywell has tested (and supports) both McAfee VirusScan and Norton AntiVirus for use in conjunction with Experion LX.

The following antivirus components have been qualified by Honeywell:

- **McAfee**
 - McAfee AV + VirusScan Engine + patch (8.7i + Engine 5400 + Patch3)
 - ePolicy Orchestrator + patch + Agent (ePO 4.5.0 + Patch1 + Agent 4.5.0.1270)

- **Symantec**
 - Symantec Endpoint Protection 11; Release Update 6a, supersedes RU6

Honeywell Services has an offering to qualify other third party packages.

Attention

Virus scanners other than McAfee VirusScan and Norton Anti-Virus may not be supported and may not work on Experion LX. For more information contact your Honeywell service center or TAC.
8.2 Installing antivirus software on process control nodes

Install antivirus software on every node in the process control network must include the following:

- In an Experion system:
 - Experion LX Stations (Flex Stations, Console Stations and Console Extension Stations, LCN-connected Stations)
 - Experion LX Server, LCN-connected servers, eServers
 - SIM-C300 nodes
 - Application Server (EAS)
 - APP node (E-APP)

- Other nodes:
 - Process History Database (PHD) servers
 - Advanced control nodes
 - Honeywell and third party application nodes
 - Non-Windows nodes
 - Subsystem interface nodes (for example, tank gauging).

It is recommended that you set up special servers for the controlled distribution of antivirus signature files to the process control network (PCN) as outlined in section “Distributing Microsoft updates and virus definition files”.
8.3 Configure active antivirus scanning

It is recommended that you adopt an active virus scanning strategy. For guidance on antivirus measures go to the Honeywell Process Solutions (HPS) web site.

In the HPS web site you find information about the following:

• Antivirus software that has been qualified by Honeywell
• Recommended antivirus strategies

The recommended strategies include ensuring that:

• Virus scan reports are regularly reviewed
• Antivirus software is configured to:
 – Scan the boot sectors of all floppy disks.
 – Move infected files to a quarantine directory and notify the user that an infected file was found. The user should be allowed to clean up the infection.

To access the Honeywell Process Solutions website

1. In a web browser, type the following URL.
 https://www.honeywellprocess.com/support
 The SUPPORT page appears, and the Search Knowledge Base tab is selected by default.

2. Select Click Here to Login in the top-right corner of the page.
 The home page appears.

3. If you are a new user, register at this website. Click Register, and follow the on-screen instructions.

4. If you are already registered, type your Account Login user name and password, and click Login.
 Your account name appears in the top-right of the page.

To apply the latest antivirus notification

1. In the Latest Support Files, click Latest Notifications link.
 The All Notifications page is displayed. This page lists the latest notifications.

2. If the notifications cannot be located in the list displayed, you can search using the Search toolbar.

3. To search with Advanced link, click the Advanced link in the Search toolbar.
 The Advanced Support Document Search page is displayed.

4. Type the details of the notification and click Search.
 The list of notifications with the required information is displayed.

5. Locate the required notification and click to open.
8.4 Tune the virus scanning for system performance

To formulate your virus scanning strategy, consider the potential impact on critical system resources.

For example, if your Experion LX is experiencing problems due to low system resources, you must perform the following:

• Ensure that the antivirus software (and other third party applications) is run only when system resources on the node are adequate to meet system needs.

• Consider limiting the system resources that are used by antivirus software during scanning. Honeywell has tested anti-viral software successfully on extremely large systems by limiting the CPU utilization of anti-viral software to as low as 10%.

To find the proper balance between server performance and virus protection you must make configuration choices such as disabling scanning on reading of files and changing the default process-based scanning to per-process scanning.

For more information about virus-scanning and system performance, refer to the section “About virus scanning and system performance”.

Attention

Do not automatically schedule full system scans on any Experion LX node as this can result in severe degradation of performance, and could therefore:

• Impact the ability of operators to respond to a situation

Directories excluded from scanning

Experion LX creates many files during normal operations and the system resource overhead of scanning each of these files for viruses is extremely high. Honeywell tests antivirus software with the following directories excluded from scanning.

• \Program Files(x86)\Honeywell\Experion PKS\Engineering Tools\system\er
• \Program Files (x86)\Microsoft SQL Server\MSSQL11.MSSQLSERVER
• \ProgramData\Honeywell
• \Program Files(x86)\Honeywell\Experion PKS\client\System

The following table describes the list of Honeywell folders/files that do not support the custom installation path.

<table>
<thead>
<tr>
<th>Media/package</th>
<th>Installation path</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init Media folder</td>
<td>C:\ProgramData\Honeywell\Install\Init Media</td>
<td>This folder is created by Experion LX System Initialization media, and is used for maintaining logs and configuration files. These files are only created during install time, not accessed during runtime.</td>
</tr>
<tr>
<td>Shared Software</td>
<td>C:\Program Files(x86)\Common Files</td>
<td>Common files shared across the software.</td>
</tr>
<tr>
<td>ErrLog1.txt</td>
<td>C:\ProgramData\Honeywell\Experion PKS\ErrLog_1.txt</td>
<td>Refer to the ErrLog(s) maintained at the custom installation path location.</td>
</tr>
<tr>
<td>TraceUI</td>
<td>C:\ProgramData\Honeywell\TraceUI\DotNetSysMgmtDsp.txt</td>
<td>Log for System Management Display tracing tool.</td>
</tr>
</tbody>
</table>

About virus scanning and system performance

The Experion LX system requires a certain amount of system resources (including CPU, memory, disk access), in order to perform reliably. Shortages of these resources may lead to decreased system performance.

When tuning antivirus software, consider balancing performance against risk. On some systems, the high performance of the server node is balanced against the performance of the scanning engine. Some antivirus scanners allow you to set maximum CPU usage. The default installation of antivirus software generally meets the demands of most customers. However, for systems with extremely high CPU usage and input/output...
demands, the default installation of antivirus software may impose system limitations. Please refer to your antivirus software documentation for specific procedures on how to limit CPU utilization.

If your system is experiencing continued resource-related performance problems, there are further steps that you can take to limit the resources consumed by antivirus software. For up-to-date and specific information, look up the web-site for your antivirus software.
8.5 Ensure frequent updates to antivirus signature files

Non-directed virus and worm attacks are common attacks on a control system. A virus that is deemed low risk for corporate systems may pose a high risk to a control system if it causes a denial of service. It is therefore essential to update antivirus signature files frequently by:

- Subscribing to the updates of your antivirus software vendor(s)
- Leveraging enterprise antivirus policies and practices

Where it is not practical to do this daily, it is worth monitoring those Web sites which publish information about new virus attacks so that the system can be isolated if a specific threat appears.

For recommendations on distributing antivirus updates, refer to “Distributing Microsoft updates and virus definition files”.

8.6 Test the deployment of antivirus signature files

It is important to test antivirus signature files offline before deploying them. This helps to ensure that the signature file does not break the antivirus software or cause problems on the computer. For example, you could first test the signature files on:

- A staged test system
- One or two nodes

In line with the best practice of minimizing communication between the business network and the process control network, it is recommended that updates to antivirus signature files be distributed from a server located in a DMZ as outlined in section “Distributing Microsoft updates and virus definition files”.

When implementing the automatic deployment of signature files, it is also important to:

- Stagger automatic deployment to eliminate the potential for common cause failure. For example, deploy to no more than three or four nodes per hour.
- Follow the recommendations of your antivirus software vendor for distribution server/services.
- Stage the distribution on a test system.
8.7 Prohibit email clients on the process control network

Do not install email clients on any node connected to the process control network. Honeywell does not support email clients on the process control network.

Viruses and email

Many viruses and similar malware propagate through email. Not only do these viruses cause damage to the computer, often rendering them inoperable, they also cause significant network traffic by mass-mailing to other addresses, which may prevent the timely delivery of controls and alarms.

Instant messaging

An emerging trend is the use of instant messaging (IM) as a transport mechanism for malware. Targeting MSN clients in particular, the malware sends messages to all contacts on an infected machine, thereby increasing network traffic uncontrollably. This message itself, apparently from a trusted source, tells the recipient to browse to a malicious web site which then download more serious malware, opening back doors or otherwise allowing takeover of the machine. It is possible that IM replaces email as the prime carrier of malware in the near future.

Honeywell strongly advises against supporting instant messaging on nodes within the process control network (PCN).
8.8 Spyware

An increasingly common threat is that posed by spyware, also known as "bots." These are typically small modules that do not in themselves cause damage, but record keystrokes and other user actions, and then transmit this information to a remote host, where passwords, account, and other information can be extracted.

Conventional antivirus checkers do not look for spyware. Like viruses and other malware, spyware can be propagated through email or inadvertently downloaded in the course of Internet access.

Note that Honeywell does not support internet and email access from the PCN.
9 Network Planning

General network planning issues for an Experion process control network are described in the following documents:

- **Overview** describes the basic concepts and terminology as well as the capabilities of an Experion process control network.
- **Server and Client Planning Guide** contains planning information for Experion LX, including information about distributed systems architecture (DSA), server redundancy, and data exchange. Refer to the "Networks" section in the **Server and Client Planning Guide**.
- Windows Domain and Workgroup Implementation Guide. For planning information, refer to Windows Domain and Workgroup Planning Guide. For operation system migration information, refer the appropriate operating system-specific implementation guide Windows Domain Implementation Guide for Windows Server 2016/Windows Domain Implementation Guide for Windows Server 2016 contains information and recommendations to assist you in setting up a domain controller and workgroups for your Experion LX system.
The EtherNet/IP (EIP) interface facilitates a comprehensive integration between the C300 controllers and the EtherNet/IP-compatible nodes and I/O devices, which are installed on the network. It also provides an efficient integration between the C300 and the ControlLogix Control system. EIP is only supported in high capacity topology or deployment of Experion LX.

In addition to the “Related documents” on page 12 section, refer to the following documentation resources before you start the planning and design activities:

- The Overview document and the Control Building user’s guide for more information about the integration between C300 and EtherNet/IP-compatible I/O devices.
- C300 controller user’s guide for more information about the planning and design activities of the C300 Controller.

Additionally, the following sections provide more information to help you plan and design an EtherNet/IP interface for the integration between C300 and the EtherNet/IP-compatible devices:

- “Network requirements” on page 58
- “EtherNet/IP implementation architecture and topology” on page 61
- “Tofino firewall configuration” on page 73
- “Configuring the Stratix switch for EtherNet/IP integration” on page 65

Related topics
“Network requirements” on page 58
“EtherNet/IP implementation architecture and topology” on page 61
“Configuring the Stratix switch for EtherNet/IP integration” on page 65
“Switch Maintenance” on page 72
“Tofino firewall configuration” on page 73
10.1 Network requirements

The following table lists the hardware and software components required for the EtherNet/IP implementation.

Hardware components

<table>
<thead>
<tr>
<th>Component</th>
<th>Supported type/version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO switches</td>
<td>2960 and above</td>
<td>Level 2 CISCO switches For more information about configuring Level 2 CISCO switches, see Fault Tolerant Ethernet Overview and Implementation Guide.</td>
</tr>
</tbody>
</table>
| Tofino security appliance | TSA 100 | The Tofino Industrial Security Solution helps in providing a secure communication on the industrial control network. It is a distributed network security solution. The Tofino security appliance is a security device, which is connected to the Level 2 CISCO switches and the Stratix Switch. For more information about the Tofino firewall and configuring the Tofino firewall, see:
 • “Tofino Security”
 • “Tofino firewall configuration” on page 73 |
| Stratix switch | Stratix 8000 | • The Stratix switch is used for connecting the EtherNet/IP-enabled devices to the C300 controller through the Tofino firewall and the CISCO switches.
 • The Stratix switch is also used for connecting the ControlLogix PLC and the C300 controller.
 For more information about Stratix switches, see the “Rockwell Literature Library”.
 For more information about configuring Stratix switches, see “Configuring the Stratix switch for EtherNet/IP integration” on page 65 |
<p>| ArmorPoint adapter | ArmorPoint 1738-AENT adapter | For more information about installing and configuring the ArmorPoint 1738–AENT adapter, see the “Rockwell Literature Library”. |</p>
<table>
<thead>
<tr>
<th>Component</th>
<th>Supported type/version</th>
<th>Description</th>
</tr>
</thead>
</table>
| ArmorPoint I/O modules | • ArmorPoint 1738-IB4DM12
• ArmorPoint 1738-IB8M12
• ArmorPoint 1738-IE2CM12
• ArmorPoint 1738-IE4CM12
• ArmorPoint 1738-IR2M12
• ArmorPoint 1738-IT2IM12
• ArmorPoint-1738-OA2M12AC3
• ArmorPoint 1738-OB2EM12
• ArmorPoint 1738-OB8EM12
• ArmorPoint 1738-OE2CM12
• ArmorPoint 1738-OE4CM12 | • For more information about the supported I/O modules of the ArmorPoint family, see EtherNet/IP device configuration in the Control Building User’s guide.
• For more information about installing and configuring the EtherNet/IP-compliant ArmorPoint I/O devices, see the “Rockwell Literature Library”. |
| ArmorBlock I/O modules | • ArmorBlock 1732E-IB16M12DR
• ArmorBlock 1732E-IF4M12R
• ArmorBlock 1732E-IR4IM12R
• ArmorBlock 1732E-IT4IM12R
• ArmorBlock 1732E-OF4M12R | For more information about installing and configuring the EtherNet/IP-compliant ArmorBlock I/O devices, see the “Rockwell Literature Library”. |
| PowerFlex Drives | PowerFlex 755 | For more information about installing and configuring the PowerFlex 755 drive, see the “Rockwell Literature Library”. |
| Adapter for E3 and E3 plus relays | 193-DNENCATR | For more information about installing and configuring the 193-DNENCATR adapter, see the “Rockwell Literature Library”. |
| Relays | E3 and E3 plus | For more information about installing and configuring the E3 and E3 plus relays, see the “Rockwell Literature Library”. |
| ControlLogix PLC | 5572 and 5555 | For more information about installing and configuring the ControlLogix PLC, see the “Rockwell Literature Library”. |
| EtherNet/IP Tap (ETAP) | 1783–ETAP | The 1783 ETAP can be used as a Ring Supervisor and also as a non-supervisor. For more information about installing and configuring the 1783 ETAP, see the “Rockwell Literature Library”. |
| Drive Explorer | | The DriveExplorer is an easy-to-use application, which is used for online configuration of PowerFlex drives and communication adapters. It is also used for monitoring purposes.
For more information about DriveExplorer, see:
• “Rockwell Literature Library”
• “DriveExplorer” |
| Allan Bradley OPC Server from MatrikonOPC | | The MatrikonOPC Server for Allen Bradley PLCs enables data interchange between OPC clients and Allen Bradley-compliant devices. For documentation about installation and configuration, see MatrikonOPC Server for Allen Bradley PLCs Online Help. |
Attention

Ensure that there are no duplicate IP nodes on the network. If the IP address of an existing EtherNet/IP I/O on the network is assigned to another EtherNet/IP I/O device, which is connected to the Uplink port of the L2 switch, the existing EtherNet/IP I/O device loses its communication with the C300.
10.2 EtherNet/IP implementation architecture and topology

The C300 controller supports EtherNet/IP (EIP). The EtherNet/IP supportability facilitates the following:

- Integration between C300 and the ControlLogix control system
- Communication between C300 and the EtherNet/IP-compatible third-party devices, such as I/Os, drives, and relays

Supported topologies

The EtherNet/IP-I/O devices, drives, and relays can be set up in one of the following network topologies:

- Ring topology — The nodes of the network are connected in a circular mode, forming a ring.
- Linear bus topology — The nodes of the network are connected to a common communication media.
- Star topology — The nodes of the network are connected to a central hub.

The topology can also be a hybrid setup with a combination of star, linear bus, and ring topologies.

A Device-level ring topology is recommended because it provides a network that is single-fault tolerant.

In an EtherNet/IP implementation setup, the ring network includes the following components:

- EtherNet/IP-compatible I/O devices, drives, and relays
- Ring supervisor
- ETAP modules for single port devices

One of the 1783 EtherNet/IP TAP (ETAP) is configured as the Ring supervisor, which is connected to the Stratix switch. The Ring supervisor is an important component on the ring network because it is used as the connection media between the EtherNet/IP-compatible devices and the Stratix switch. Therefore, if the connection between the Ring supervisor and the Stratix switch is lost, the connection from the I/O devices to the C300 controller will be lost.

The 1783-ETAP modules are also used to connect single-port devices on the ring and linear bus network.

Attention

- Experion LX SCADA access for ControlLogix tags using Matrikon OPC server will also work in this topology. Matrikon OPC requires the Allen Bradley via Ethernet/IP driver for communication. Refer to the SCADA access guide.

EtherNet/IP implementation architecture and topology

The following figure depicts the EtherNet/IP implementation architecture:
<table>
<thead>
<tr>
<th>Item</th>
<th>Graphic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Stratix Switch</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>ControlLogix Controller</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Ring Supervisor – ETAP configured as ring supervisor</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Dual port EtherNet/IP device</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>ETAP</td>
</tr>
<tr>
<td>Item</td>
<td>Graphic</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Single port EtherNet/IP device</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Computer with Third party software installations</td>
</tr>
</tbody>
</table>

The preceding graphic represents the following entities on the network:

- The Experion LX system on the FTE network
- The C300 controllers and the Level1 switch
- Tofino firewall
- Stratix switch
- The EtherNet/IP I/O devices on an EtherNet/IP network
- The ControlLogix PLC on an EtherNet/IP network
- Computer to install third-party tools

The following components on the EtherNet/IP network help in the integration of C300 with the EtherNet/IP-compatible I/O devices and the integration of C300 with the ControlLogix PLC:

- Tofino firewall — The Tofino security appliance is added to allow only the EtherNet/IP traffic to and from the L2 Switches. You can define firewall rules, specify the devices that are allowed to communicate, and specify the protocols that can be used. The Tofino firewall is connected to the Stratix switch. For more information about Tofino firewall configuration, see “Tofino firewall configuration” on page 73.

- Stratix switch — The Stratix switch is used for connecting the EtherNet/IP-compatible I/O devices and the ControlLogix PLC to the C300 controllers. The following components are connected to the Stratix switch:
 - The I/O devices, drives, and relays
 - The ControlLogix PLC
 - Computer in which third-party tools are installed

For more information about the Stratix switch configuration, see “Configuring the Stratix switch for EtherNet/IP integration” on page 65.
• Ring Supervisor — The Ring supervisor is a part of the EtherNet/IP devices. The Ring supervisor connects to the Stratix switch. The Ring supervisor is an important component on the ring network because it is used as the connection media between the EtherNet/IP-compatible devices and the Stratix switch.

• ETAP— The 1783-ETAP modules are used to connect single-port devices to a ring or linear bus network.

• Computer to install third-party tools — You can use the computer to install third-party tools that are required. For example: DriveExplorer, and web access to EtherNet/IP I/O devices.

ControlLogix-controlled EtherNet/IP devices — The EtherNet/IP IO devices controlled by the ControlLogix must not be directly connected on the Stratix switch. These devices must be configured under the Control Logix chassis through a downlink EtherNet/IP module. For more information about configuring EtherNet/IP devices for the ControlLogix PLC, see the ControlLogix documentation in the.
10.3 Configuring the Stratix switch for EtherNet/IP integration

Stratix switch 8000 with IOS firmware revision 15.0 is used for connecting the EtherNet/IP-compatible I/O devices and the ControlLogix PLC to the C300 controllers. For more information about Stratix 8000, see Rockwell Literature Library.

Perform the following tasks to install the switch configuration files to the node, and configure the Stratix switches for EtherNet/IP integration. Use the command line interface of the switch and the correct switch startup configuration file to perform the following tasks.

Prerequisites

Before beginning the procedures in this section, ensure that you verify the following:

- You have an RS-232 cable configured, as required by the switch vendor, to connect the computer’s serial port to the communication port of the switch.
- You have downloaded HyperTerminal and Telnet is enabled on the operating system used as the interface to the switch.
- You have reviewed the Stratix switch documentation at Rockwell Literature library.

To configure the Stratix switch for EtherNet/IP integration

1. Connect to the switch. See “Connecting locally to the switch” on page 65.
2. Verify the Stratix switches have the IOS version qualified by Honeywell as listed in the SCN for your release. See “Checking the version of the switch IOS” on page 66.
4. Load the switch configuration file. See “Loading the switch configuration file” on page 70.

Related topics

- “Connecting locally to the switch” on page 65
- “Checking the version of the switch IOS” on page 66
- “Accessing switch configuration files” on page 66
- “Configuring switch interface options” on page 67
- “Loading the switch configuration file” on page 70

10.3.1 Connecting locally to the switch

Perform the following procedure to connect to the switch and start HyperTerminal.

⚠️ **Attention**

- Do not turn on the switch until instructed to do so.

To connect locally to the switch

1. Connect the RS-232 cable to the communication port of the switch and the computer’s serial port.
2. Click **Start > All Programs > Accessories > Communications > HyperTerminal**.
3. On the **Connection Description** dialog box, specify a name that describes the connection and click **OK**.
4. In the **Icon** box, click the appropriate icon, and click **OK**.
5. On the **Connect To** dialog box, select the serial port used by the computer from the **Connect Using** box and click **OK**.
6. From the **Connect To** dialog box, select the serial port being used by the computer and click **OK**.
7 From the **Properties** page, configure the following port settings:
 - Bits per second: 9600
 - Data bits: 8
 - Parity: NONE
 - Stop bits: 1
 - Flow control: NONE

8 Click **OK**.

Results

The switch is connected.

10.3.2 **Checking the version of the switch IOS**

Switches with unqualified IOS have unpredictable performance. Therefore, perform the following procedure to check the IOS version. Stratix 8000 is tested and qualified for EtherNet/IP with IOS firmware revision 15.0.

Prerequisites

Ensure that you have downloaded and installed the HyperTerminal application.

To check the version of the Stratix switch IOS

1 Open Hyper Terminal and log in to the switch.
2 Run the following command to check the IOS version:
   ```
   show boot
   ```
 If the IOS version is not qualified by Honeywell as listed in the SCN, contact Honeywell Network Services for the procedure to upgrade the IOS.

Results

The version of the IOS is displayed.

10.3.3 **Accessing switch configuration files**

Switch configuration files are packaged with the FTE driver and are copied to the following location when you run the FTE driver installation package.

```
\Honeywell\FTEDriver\SwitchConfigurationFiles\stratix 8000
```

If you have not installed FTE, access the switch configuration files from the Experion LX PKS Installation media at the **Media Drive: \FTEDriver\SwitchConfiguration** location. After connecting to the switch, use the command line interface (CLI) of the switch to configure the switch options. If the switch does not respond, press ENTER and wait for the prompt (>) to appear. The following table lists the conventions used in the switch configuration procedures and examples.

<table>
<thead>
<tr>
<th>Convention (Example)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter host name [Switch] :Stratix_EIP</td>
<td>Text in the terminal display appears in the following font: commands</td>
</tr>
<tr>
<td>Stratix_EIP(config)#int vlan1</td>
<td>Arguments for which the user provides the required inputs are bold and italicized.</td>
</tr>
</tbody>
</table>

Prerequisites

Ensure that you have downloaded and installed the HyperTerminal application.

To check the version of the Stratix switch IOS

1. Open Hyper Terminal and log in to the switch.
2. Run the following command to check the IOS version:
   ```
   show boot
   ```
 If the IOS version is not qualified by Honeywell as listed in the SCN, contact Honeywell Network Services for the procedure to upgrade the IOS.

Results

The version of the IOS is displayed.

10.3.3 **Accessing switch configuration files**

Switch configuration files are packaged with the FTE driver and are copied to the following location when you run the FTE driver installation package.

```
\Honeywell\FTEDriver\SwitchConfigurationFiles\stratix 8000
```

If you have not installed FTE, access the switch configuration files from the Experion LX PKS Installation media at the **Media Drive: \FTEDriver\SwitchConfiguration** location. After connecting to the switch, use the command line interface (CLI) of the switch to configure the switch options. If the switch does not respond, press ENTER and wait for the prompt (>) to appear. The following table lists the conventions used in the switch configuration procedures and examples.

<table>
<thead>
<tr>
<th>Convention (Example)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter host name [Switch] :Stratix_EIP</td>
<td>Text in the terminal display appears in the following font: commands</td>
</tr>
<tr>
<td>Stratix_EIP(config)#int vlan1</td>
<td>Arguments for which the user provides the required inputs are bold and italicized.</td>
</tr>
</tbody>
</table>
10.3.3.1 Switch configuration files for the Stratix 8000 switch

The following are the Stratix switch configuration files, which are located at: \Honeywell\FTEDriver\SwitchConfigurationFiles\stratix 8000\.

<table>
<thead>
<tr>
<th>Stratix switch configuration file</th>
<th>Port information</th>
</tr>
</thead>
</table>
| eip_stratix8000_1u_8.txt | This file is for the Stratix 8000 switch, which contains 8 ports.
• 1 uplink port configuration
• 2 ETAP port configurations
• 5 ports are configured for connecting EIP IO Devices |
| eip_stratix8000_1u_16.txt | This file is for the Stratix 8000 switch, which contains 16 ports.
• 1 uplink port configuration
• 2 ETAP port configurations
• 13 ports are configured for connecting EIP IO Devices |
| eip_stratix8000_1u_24.txt | This file is for the Stratix 8000 switch, which contains 24 ports.
• 1 uplink port configuration
• 2 ETAP port configurations
• 21 ports are configured for connecting EIP IO Devices |

10.3.3.2 Stratix switch port and connection speeds

The following table summarizes the switch port and connection speeds for the Stratix switch.

<table>
<thead>
<tr>
<th>Switch port</th>
<th>Requirement</th>
<th>Comment</th>
</tr>
</thead>
</table>
| EtherNet/IP IO devices ports | • Port fast spanning tree is enabled
• Speed is set to auto with full duplex | • Helps in connecting EtherNet/IP devices
• Helps in quick reconnection |
| EtherNet/IP ETAP ports | • Port fast spanning tree is enabled
• Speed is set to auto with full duplex | • Helps in connecting ETAP for making a Ring or a Linear bus network
• Helps in quick reconnection |
| Uplink ports | • Spanning tree is enabled.
• Speed is set to 100 Megabit and full duplex. | • Helps in connecting the downlink port of the Tofino firewall
• Helps to connect to another EtherNet/IP Stratix switch |

10.3.4 Configuring switch interface options

The procedures in this section describe how to enable the configuration dialog and set the basic management setup in the switch. Additionally, it also describes how to set up the switch IP address. Establishing an IP address allows you to use Telnet and FTP sessions to save and restore configuration options.
Attention

The procedures in this section contain multiple instances of switch display for reference. The text in the switch display instances are formatted as follows:

- The commands and some of the options in the switch display instances are formatted bold. Therefore, the text in bold should be typed as it appears.
- Sample inputs that must be provided by the user are formatted bold and italicized (For example: *Stratix_EIP*).
- Ensure that you specify an appropriate value that matches your requirement.
- Press the Enter key after you type the required command or option.

To configure the switch interface options

1. When the following display appears, specify the required values.

   ```
   Would you like to enter the initial configuration dialog? [yes/no]: y
   
   At any point you may enter a question mark '?' for help.
   Use ctrl-c to abort configuration dialog at any prompt.
   Default settings are in square brackets '[]'.
   
   Basic management setup configures only enough connectivity
   for management of the system, extended setup will ask you
   to configure each interface on the system
   
   Would you like to enter basic management setup? [yes/no]: y
   
   Configuring global parameters:
   ```

 The host name is unique for each switch. The following values are used as examples in this procedure:

<table>
<thead>
<tr>
<th>Option</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>host name</td>
<td>Stratix_EIP</td>
</tr>
<tr>
<td>enable secret</td>
<td>Stratix_EIP1</td>
</tr>
<tr>
<td>virtual terminal password</td>
<td>EIP1</td>
</tr>
<tr>
<td>enable password</td>
<td>Stratix_EIP1</td>
</tr>
</tbody>
</table>

2. When the following display appears, specify the required details.

 The following is an example for your reference. Press the Space bar to advance the display when it pauses.

   ```
   Enter host name [Switch]: *Stratix_EIP*
   
   The enable secret is a password used to protect access to privileged EXEC and configuration
   modes. This password, after entered, becomes encrypted in the configuration.
   Enter enable secret: *Stratix_EIP1*
   
   The enable password is used when you do not specify an enable secret password, with some older
   software versions, and some boot images.
   Enter enable password: *EIP1*
   
   The virtual terminal password is used to protect access to the router over a network
   interface.
   Enter virtual terminal password: *Stratix_EIP1*
   
   Configure SNMP Network Management? [no]: N
   ```

3. After the configuration display is complete, the switch dialog appears. Specify the required values.
Enter interface name used to connect to the management network from the above interface summary: vlan1

Configuring interface VLAN1:
Configure IP on this interface? [yes/no]: N
Would you like to enable as a cluster command switch? [yes/no]: N

The following is an abridged example of what displays after the VLAN1 configuration. Press the SPACE BAR to advance the display when it pauses.

The following configuration command script was created:

```plaintext
clear hostname STRATIX_EIP
enable secret 5 *$k$s8P8$Beul09t57ZzWmlrFtnImb.
enable password EIP1
line vty 0 15
password STRATIX_EIP1
no snmp-server

interface VLAN1
no shutdown
no ip address

interface FastEthernet1/1

interface FastEthernet1/2

interface FastEthernet1/3

interface FastEthernet1/4

interface GigabitEthernet1/1

interface GigabitEthernet1/2
end
```

4 After the configuration display is complete, the following switch dialog appears. Type 2 and press ENTER to save the switch configuration.

[0] Go to the IOS command prompt without saving this config
[1] Return back to the setup without saving this config.
[2] Save this configuration to nvram and exit.

Enter your selection [2]: 2

Setting up the IP address for the switch

1 Use the enable command and the enable secret string that was established earlier, in the procedure. Stratix_EIP1 is used in the following example. Specify the required values.
Press RETURN to get started! <ENTER>

Stratix_EIP>enable
Password: Stratix_EIP1

Stratix_EIP#config t
enter configuration commands, one per line. End with CNTL/Z

2 If you have to use VLAN 101, initialize VLAN 101 by performing the following additional steps:
 1. Type the following:
      ```
      vlan 101
      ```
 2. Type the following:
      ```
      exit
      ```
 Otherwise, go to the next step.

3 To enable Telnet and FTP, run one of the following commands:
 - To configure VLAN1, type:
     ```
     int vlan1
     ```
 - To configure VLAN101, type:
     ```
     int vlan101
     ```

4 The following is used for the IP address and subnet mask in the following switch display.
 10.1.4.253 255.255.255.0

5 Type `exit` and type `write`.
 The switch option configuration is complete. You can now download the appropriate switch configuration file.

10.3.5 Loading the switch configuration file

The following procedure uses the Xmodem file transfer utility of Hyperterminal to transfer the correct switch configuration file to the switch. After downloading the switch configuration file, write the configuration back to the switch memory.

To determine the most appropriate switch configuration file for your system, see “Switch configuration files for the Stratix 8000 switch” on page 67

To load the switch configuration files

1 Initiate the transfer in the switch by using the copy command. Type all values that appear in bold.

```
Stratix_EIP#copy xmodem: system:running-config
```

2 To initiate the transfer from the Hyperterminal, select Transfer > Send File.

3 Click Browse and navigate to the Switch Configuration folder in one of the following locations:
 - C:\Program Files\Honeywell\FTEDriver\SwitchConfigurationFiles\stratix 8000\
 - Media Drive:\Packages\FTE_Driver\Switch_Configuration_Files\

www.honeywell.com
• Location you saved the files

4 Select the correct switch configuration file and click OPEN.

5 Select Xmodem under Protocol.

6 Click Send to start the file transfer.

<table>
<thead>
<tr>
<th>Attention</th>
</tr>
</thead>
<tbody>
<tr>
<td>• If there is an existing file with the same name, type y to overwrite the file. If there is a problem during the transfer, error messages are displayed, fix the problem with the switch configuration file and perform steps 2 to 7.</td>
</tr>
</tbody>
</table>

A message indicating that the file is copied is displayed.

7 Write the basic switch configuration file and the switch configuration file you downloaded back to the switch memory by running the following command:

```
Stratix_EIP#write
```

8 Run the following command to view the switch configuration options:

```
Stratix_EIP#sho run
```

The options are displayed based on the switch configuration file. For example,

• 1 uplink
• 2 ETAP ports
• Remaining ports for EIP I/O devices

Results

The switch configuration file is loaded.
10.4 Switch Maintenance

During a maintenance or upgrade process, to move the Ethernet/IP cable (TOFINO Downlink) from the yellow L2 switch to the green L2 switch, perform the following tasks.

To move the Ethernet/IP cable from the yellow L2 switch to the green L2 switch

1. Disconnect the Stratix cable (EtherNet/IP Uplink) from the yellow switch.
2. Disconnect the cross-over cable between the yellow and green L2 switches.
3. Connect the Stratix cable (EtherNet/IP Uplink) to the green switch.
4. Reboot the yellow switch for maintenance or upgrade purpose.
5. Connect the cross-over cable between the yellow and green L2 switches.
6. Move the Stratix cable (EtherNet/IP Uplink) to the yellow switch.
10.5 Tofino firewall configuration

The Tofino Industrial Security Solution helps in providing a secure communication on the industrial control network. It is a distributed network security solution. To ensure a secure communication, you can define firewall rules, specify the devices that are allowed to communicate, and specify the protocols that can be used. The Tofino security appliance is added to allow only the Ethernet/IP™ traffic to and from the L2 Switches. The Tofino Industrial Security Solution consists of the following components:

- The Tofino Security appliance
- Loadable Security Modules (LSM)
- Tofino Central Management Platform (CMP)

Note

Tofino firewall is needed only for “DIRECT” topology. In case of “Through EIM” topology there is no need of Tofino firewall.

For more information about the Tofino Industrial Solution and its components, see Tofino Security Products.

The following figure highlights the port specifications and the cable details in a Tofino firewall configuration:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Up-link port configured to 100TX-FD, No MDIX</td>
</tr>
<tr>
<td>2</td>
<td>Straight EtherNet cables</td>
</tr>
<tr>
<td>3</td>
<td>Any L2 port configured to 100TX-FD, No MDIX</td>
</tr>
</tbody>
</table>

Attention

The Tofino security appliance must be connected to the yellow level 2 CISCO switch.

10.5.1 Software and hardware requirements for Tofino firewall configuration

The following table provides the required licenses, hardware, and software components to setup a Tofino firewall module. For more information about the components listed in the table, see “Tofino Security Products”.

Honeywell 73
<table>
<thead>
<tr>
<th>Component</th>
<th>Part number</th>
<th>Description</th>
<th>Requirement</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>TofinoXe-02-00</td>
<td>Tofino Xenon firewall hardware module. For additional product characteristics, refer to "Tofino Security Products".</td>
<td>Required</td>
<td>1</td>
</tr>
<tr>
<td>Software</td>
<td>License activation Key</td>
<td>This license activation key is supplied along with the hardware and key gets posted the on the manual.</td>
<td>Required</td>
<td>1</td>
</tr>
<tr>
<td>Tofino Configurator Software</td>
<td>tofino-configurator-setup-v02.0.01-r12449</td>
<td>Download Tofino-configurator software after registering the product with license activation key.</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Software License</td>
<td>LSM-LOG-100</td>
<td>This will log the events in Tofino to a Log file on a server.</td>
<td>Optional</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>LSM-SAM-100</td>
<td>This is used to securely manage the Tofino and other network equipments.</td>
<td>Optional</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TofinoXe-02-00-0003</td>
<td>This is a preloaded Software module required to configure the Tofino Firewall through network. This is a licensed module.</td>
<td>Optional</td>
<td></td>
</tr>
</tbody>
</table>

The product code that was used for qualification is - **TofinoXe-02-00-T1-T1-DD-Z9-0001-TA-T-02.0.06**.

Following table has the description of the product code.

<table>
<thead>
<tr>
<th>Item</th>
<th>Product Characteristic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TofinoXe</td>
<td>Device</td>
<td>2 port router</td>
</tr>
<tr>
<td>2</td>
<td>Number of Fast Ethernet ports</td>
<td>2x Fast Ethernet ports</td>
</tr>
<tr>
<td>0</td>
<td>Number of Gigabit Ethernet ports</td>
<td>0x gigabit ports</td>
</tr>
<tr>
<td>T1</td>
<td>Ethernet port 1- NET1</td>
<td>1xRJ45 socket for 10/100 Mb/s twisted pair port</td>
</tr>
<tr>
<td>T1</td>
<td>Ethernet port 1- NET2</td>
<td>1xRJ45 socket for 10/100 Mb/s twisted pair port</td>
</tr>
<tr>
<td>T</td>
<td>Temperature Range</td>
<td>Extended</td>
</tr>
<tr>
<td>DD</td>
<td>Operating Voltage</td>
<td>2 Voltage Inputs for Redundancy supply</td>
</tr>
<tr>
<td>Z9</td>
<td>Certifications and Declarations</td>
<td>CE, EN 60950-1, EN 61131-2, FCC</td>
</tr>
<tr>
<td>1</td>
<td>Preloaded Software module</td>
<td>Firewall</td>
</tr>
<tr>
<td>TA</td>
<td>Customization</td>
<td>Tofino standard</td>
</tr>
<tr>
<td>T</td>
<td>Software configuration</td>
<td>Tofino Standard configuration</td>
</tr>
<tr>
<td>02.0.06</td>
<td>Software Version</td>
<td>Current software version</td>
</tr>
<tr>
<td>Bug fix</td>
<td></td>
<td>Current bug fix version</td>
</tr>
</tbody>
</table>

10.5.2 Configuring the Tofino firewall

The Tofino security appliance is added to allow only the Ethernet/IP™ traffic to and from the L2 Switches. To facilitate the Ethernet/IP™ devices to communicate with the C300 controller (which is connected to the L2 switch) through the Tofino firewall, you must configure the Tofino firewall with specific firewall rules.
Prerequisites

Refer to the Tofino documentation and perform the following tasks:

- **Set up the hardware** - For more information about the hardware setup specifications, see the following:
 - Tofino Installation and Troubleshooting Guide
 - “Software and hardware requirements for Tofino firewall configuration” on page 73

- **Install the Tofino CMP — Central Management Platform (CMP) tool** - For more information about installing and configuring the Tofino CMP tool, see Tofino CMP Installation and Upgrade Guide.

Attention
- Run the Tofino CMP installer to generate the Export Request File. Send this file to activation@tofinosecurity.com to receive a Grant File. Import the grant file into the Tofino CMP tool, provide the required key, and create a login account.

To configure the Tofino firewall

1. Connect straight Ethernet cable between the computer, which has the CMP tool installed to the Up-Link port (Upper port) of the Tofino firewall hardware module.
2. Configure an Up-Link port on the Stratix switch to 100TX-FD, No MDIX
3. Connect a straight Ethernet cable from Down-Link port (bottom port) to the configured Up-Link port on Stratix switch.

4. Ensure that ICMP ping is possible from the computer, which has the CMP tool to any Ethernet/IP™ device connected to the Stratix switch.
5. Login to the CMP tool.
6. Start a Tofino Discovery Scan ensuring that the discovery scan includes the IP address of the Ethernet/IP™ devices, which are connected to the Stratix switch.
7. Drag the discovered Tofino SA from the Tofino Discovery view to the Network Editor and rename it appropriately.
 - The New Node Wizard appears.
8. In the New Node Wizard, specify a name, and click Next.
9. Specify the following attributes for the node and click Finish:

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untrusted Media Type</td>
<td>100baseTX-FD</td>
</tr>
<tr>
<td>Trusted Media Type</td>
<td>100baseTX-FD</td>
</tr>
<tr>
<td>USB Load Config</td>
<td>Disabled</td>
</tr>
<tr>
<td>Mode Button Behavior</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
10 Double-click the new Tofino instance in the Network Editor. Under the Modules tab, select Firewall LSM and set the state to Activated.

11 Under the Protocol tab right-click to create a new protocol.
The Protocol Wizard launches. Follow the on-screen instructions to create the new protocol.

1. On the Choose a Protocol Type page, select **TCP UDP Protocol** as the Protocol type.
2. On the TCP UDP Settings page, specify the following details:
 - Name — Ethernet IO
 - Ports — 2222
 - Select UDP.

The new protocol named Ethernet IO is created.

12 Double-click the new Tofino instance in Network Editor. Under the **Firewall** tab, add the following global rules. To add the rules, drag the required option to the **Global Rules** section:
 - Drag the IGMP – Allow option from the Special Rules tab to the Global Rules section:
 - Drag the EtherNet/IP (CIP) option from the Protocols tab to the Global Rules section. Select and set the rule as ALLOW.
 - Drag the Ethernet IO option from the Protocols tab to the Global Rules section. Select and set the rule as DENY_NOLOG.
13 In the **General / Communications** tab, set the Tofino mode to **Operational**.

14 Remove the straight Ethernet cable connected to the computer with CMP tool and connect it to any L2 port on the L2 switch as shown in the following graphic.
Configure strategies in the C300 and to write and read the OP, PV values from the Ethernet/IP™ devices to verify the proper operation of the Tofino firewall.

Note

To modify the Tofino LSM firewall configuration (for example, changing the mode from Operational to Test), ensure that you always connect the straight Ethernet cable directly between the computer with CMP tool and the Up-Link port (upper port) of Tofino hardware module. For more information about troubleshooting other issues related to Tofino please, see the Tofino Troubleshooting guide in the Help menu of the CMP Tool.

CAUTION

Do not modify the Tofino firewall mode of operation by using the computer with the CMP tool connected to L2 switch as this might result in loss of view and loss of control.

Results

You have configured the required rules to facilitate the Ethernet/IP™ devices to communicate with the C300 controller through the Tofino firewall.

Next steps

In Control Builder verify the input and output modules.

10.5.2.1 Capturing Tofino diagnostic information

You can capture Tofino-related diagnostic information to a USB storage device. To create these diagnostic information files you must perform a USB save.

To capture Tofino diagnostic information

1. Insert a USB storage device into one of the USB ports.
2. Press and hold the Config button for 1-2 seconds (less than 5 seconds).
3. The Fault-Event-Mode LEDs will begin to flash in downward sequence, to indicate the Save operation.
4. When the LED flashing sequence stops, remove the USB key.
5. If the save operation was successful, the Tofino SA LEDs will revert to the state they were originally in prior to the saving action.

If the USB Diagnostic Save is successful there will be three or four files on the USB key similar* to the following:

- 00_00_11_8D_95_14_diagnostics.txt
- 00_00_11_8D_95_14_diagnostics.enc
- 00_00_11_8D_95_14_kernel_evt.enc
- 00_00_11_8D_95_14_evt.log
The log file (example, 00_00_11_8D_95_14_evt.log will appear only if the Event Logger LSM is installed and activated.)

*The prefix of the file name will be equal to the Tofino ID.

Send copies of these files to the technical support team for analysis.

Attention

- For more information about troubleshooting issues related to Tofino security appliance and Tofino-related configurations, contact Tofino support or see:
 - The Tofino troubleshooting guide in the Help menu of the CMP Tool or contact the Tofino support.
 - Tofino documentation
This section describes the key network security considerations for Experion LX systems.

Related topics
“High Security Network Architecture” on page 82
“Supported topologies” on page 83
“Connecting to the business network” on page 87
“The demilitarized zone” on page 88
“Configuring the DMZ firewall” on page 89
“Specifying communication ports for Network API clients” on page 106
“Allowing EMDB access between network levels” on page 108
“Connecting other nodes to the process control network” on page 109
“Securing network equipment” on page 110
“Domain name servers” on page 111
“Remote access” on page 112
“Dual-homed computers” on page 113
“Port scanning” on page 114
“Configuring secure communication settings” on page 115
11.1 High Security Network Architecture

Honeywell's High Security Network Architecture is recommended for Fault Tolerant Ethernet based systems using Experion LX Release 200 and later. It comprises a specific set of qualified network components, including switches and routers, and template configuration files to assist with the setup of switches and routers.

To implement Honeywell's High Security Network Architecture, complete the instructions in the following topics in PDF Collection.

• Installation and Upgrades > Fault Tolerant Ethernet Overview and Implementation Guide > Planning a Honeywell FTE Network.
• Installation and Upgrades > Fault Tolerant Ethernet Overview and Implementation Guide > Use of IP Addresses in an FTE Network.

A summary of the key security-related features of Honeywell's High Security Network Architecture follows.
11.2 Supported topologies

Honeywell’s High Security Network Architecture has the following levels. At each level the node membership, IP subnetting, and switch configuration are different.

<table>
<thead>
<tr>
<th>Level</th>
<th>Function of this level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>Real time control (controllers and input/output)</td>
</tr>
<tr>
<td>Level 2</td>
<td>Supervisory control and the operator interface</td>
</tr>
<tr>
<td>Level 3</td>
<td>Advanced control and advanced applications (non-critical control applications)</td>
</tr>
<tr>
<td>Demilitarized Zone (DMZ)</td>
<td>Nodes that access the process control network as well as the business network</td>
</tr>
<tr>
<td>Level 4</td>
<td>Business network applications such as Manufacturing Execution Systems (MES) and Manufacturing Resource Planning (MRP) solutions</td>
</tr>
</tbody>
</table>

For small scale networks you can also connect:

- Level 1 and Level 2 devices using a single switch.
- Console Stations directly to the Level 1 switches where the geography of the plant dictates this.

About Level 1

At Level 1, controllers (C300) and Fieldbus Interface Modules (FIM) connect to redundant Level 1 switches. The Level 1 network is the most critical network in the system as a failure or loss of service on this network can result in loss of control. The network should be configured so that all Level 1 devices that control a given area of the plant are connected together in the same secured network.

Traffic on the Level 1 network is limited to communication with other Level 1 nodes and with the Experion LX servers and Stations at Level 2. Network traffic on the Level 1 network is also prioritized such that CDA traffic is highest priority.

About Level 2

At Level 2 Experion LX servers, Stations, and other nodes connect to Level 2 switches. There are also uplink connections from the Level 1 switches.

The Level 2 network must be a highly reliable and highly available network to maintain constant view to the process. A failure of the Level 2 network can result in a loss of view of the process.

- Domain controller can reside on Level 2 or Level 3 depending on your requirement. For more information, refer to the Windows Domain/Workgroup Implementation Guide.

IP subnetting of nodes, priority queuing, and access lists in the switches are used to control network traffic between Level 2 and Level 1 as follows:

- Internal Level 1 traffic has a higher priority than traffic between Level 2 and Level 1 nodes. Peer-to-peer controller communication is not disrupted by other network traffic.
- Only Level 2 nodes that need to communicate with Level 1 nodes are permitted to do so. No communication between Level 3 (and higher) nodes and Level 1 nodes is permitted.
- Bandwidth limits are configured for Level 2 nodes to protect against broadcast, multicast, and unicast storms.

The following image illustrates the different levels in an Experion system. Topologies other than the one illustrated in the following images are supported.
If these thresholds are set for low tolerance of high traffic bursts, then problems may be encountered with traffic between redundant servers being interpreted as an attack.

About Level 3

At Level 3 domain controllers, plant-wide applications, DSA-connected Experion LX servers, Stations, and other nodes are connected to a Level 3 router, which may also have switch functionality. There are also uplink connections from the Level 2 switches and, if required, a connection to a firewall that serves as the gateway to the business network.

A failure of the Level 3 network can result in a loss of advanced control.

IP subnets, access lists, filtering, and virtual LANs are used to control network communication as follows:

- Access from Level 3 to Level 2 nodes is only enabled if it is required.
- In addition, the type of communication is limited; for example, if authentication of Level 2 nodes by the domain controller at Level 3 is the only communication required, traffic is limited to this type.

If the nodes at Level 2 are part of a Microsoft Windows domain, these nodes have to communicate with the domain controller which should be part of the Level 3 network. Gas measurement systems can reside at either Level 3 or the DMZ.

About demilitarized zones

A demilitarized zone (DMZ) serves as a buffer zone between the process control network and the business network. It is a separate network segment connected directly to the firewall.

Servers placed in the DMZ can be accessed by nodes at Level 4, permitting the supply of data but preventing nodes at Level 4 from having direct access to any systems on the levels below. For more information, refer to the section “The demilitarized zone” on page 88.
11.2.1 Sample FTE Network topology

FTE topology is two parallel tree hierarchies of switches, up to three levels, connected at the top by one crossover cable to form a single fault tolerant network. The separate physical identity of the two trees is maintained by color coding and tagging of cables, switches and FTE node ports.

11.2.2 Experion LX - PHD Integration Topologies

The following topology image illustrates how the PHD Server may fit into the Experion LX System. Not all possible combinations are displayed, but these examples illustrate the general network schema.

11.2.3 Mixed domain and workgroup topology

If you have a geographically dispersed DSA system, you can use a mixture of domains and workgroups. The following image illustrates how you can use a domain for the centralized servers and a workgroup for the remote server and its Stations.
11.3 Connecting to the business network

The following are the differences in the nature of network traffic on these two networks.

- Internet access, FTP, email, and remote access are permitted on the business network, but not on the process control network.
- Rigorous change control procedures for network equipment, configuration, and software changes may not be in place on the business network.
- Process control network traffic should not go on the business network as it could be intercepted. Security and performance problems on the business network should not be able to affect the process control network.

Ideally there must not be direct communication between the process control network and the business network. However, practical considerations often mean that a connection is required between these networks. This is because, the process control network requires data from the business network or because certain business applications need access to data from the process control network.

However, such a connection represents a significant security risk and therefore careful consideration must be given to the design. As a result, it is strongly recommended that only a single connection be allowed and that the connection is through a firewall and a DMZ as described in the section “The demilitarized zone” on page 88.
11.4 The demilitarized zone

A demilitarized zone (DMZ) is a separate network segment that connects directly to the firewall (as illustrated in the image in section) and provides a buffer between the process control network (PCN) and the business network. Servers containing data from the process control system that needs to be accessed from the business network are put on this network segment.

It is recommended that direct access between the two networks is avoided by having each network only access nodes in the DMZ. By eliminating the direct connection between the nodes in the PCN and the business network, the security of each network is increased.

With any external connections the minimum access should be permitted through the firewall. Only identified ports required for specific communication should be opened.

The access required for specific node types is described in section “Configuring the DMZ firewall” on page 89. For more detailed information on firewall configuration, contact Honeywell Network Services.
11.5 Configuring the DMZ firewall

The firewall must use a restrictive security policy; that is, all access must be denied unless explicitly permitted. Filtering is used to permit only specific nodes on the business network, DMZ and process control network (PCN) to communicate. TCP port filtering should be used to stop denial-of-service attacks to well-known ports.

The topics in this section describe the firewall access and account requirements for an arrangement where nodes on the business network, DMZ, and PCN are separated by a firewall. While other topologies are possible, you must consider their security implications (for example, if a DMZ is not used).

Honeywell provides a service to design and configure firewalls. Contact Honeywell Network Services on 1-800-822-7673 (USA) or +1-602-313-5558 (outside the USA).

The topics in this section describe the firewall access requirements for Honeywell-supplied applications. In addition to the requirements documented, access may be required for Windows authentication of accounts and synchronization between domain controllers. The precise access requirements depend upon the following:

- The domain membership of the nodes in the DMZ (business, PCN or other).
- The domain membership of accounts used.
- The location of domain controllers and which, if any, trusts exist between domains.

For more information on:
- Domains, refer to the section “Windows Domains and Workgroups” on page 135.
- Firewall filtering requirements; refer to the relevant Microsoft documentation.

11.5.1 Distributed system architecture

This section describes the firewall access and account requirements for Distributed System Architecture (DSA) nodes.

DSA is an option that supports the sharing of information between Engineering Stations and is used by a number of the systems described in the following sections.

DSA nodes have publishing and subscribing roles. Publishing servers provide data to subscribing servers. For more details see "Distributed System Architecture" in the chapter "Servers" in the Server and Client Planning Guide. The following image illustrates a publishing and a subscribing node. DSA supports networks of nodes, any of which can be publishing, subscribing, or both.
The following table displays the firewall access requirements if both servers are running Experion R310.

<table>
<thead>
<tr>
<th>Secure Host/ Network</th>
<th>Destination Host/ Network</th>
<th>Interface</th>
<th>Ports/Service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscribing server</td>
<td>Publishing server</td>
<td>DMZ</td>
<td>12321/UDP</td>
<td>Required for embedded charts. Client nodes viewing embedded charts over DSA can also be a source host.</td>
</tr>
<tr>
<td>Subscribing server</td>
<td>Publishing server</td>
<td>DMZ</td>
<td>55556/TCP</td>
<td>Required for embedded charts. Client nodes viewing embedded charts over DSA can also be a source host.</td>
</tr>
<tr>
<td>Subscribing server</td>
<td>Publishing server</td>
<td>DMZ</td>
<td>55563/TCP</td>
<td>Required for embedded charts. Client nodes viewing embedded charts over DSA can also be a source host.</td>
</tr>
<tr>
<td>Subscribing server</td>
<td>Publishing server</td>
<td>DMZ</td>
<td>55550/TCP</td>
<td>Required for embedded charts. Client nodes viewing embedded charts over DSA can also be a source host.</td>
</tr>
<tr>
<td>Subscribing server</td>
<td>Publishing server</td>
<td>DMZ</td>
<td>55557/TCP</td>
<td>Required for embedded charts. Client nodes viewing embedded charts over DSA can also be a source host.</td>
</tr>
<tr>
<td>Subscribing server</td>
<td>Publishing server</td>
<td>DMZ</td>
<td>1433/TCP</td>
<td>This is the default MS SQL server port, required for embedded charts. Client nodes viewing embedded charts over DSA can also be a source host.</td>
</tr>
<tr>
<td>Subscribing server</td>
<td>Publishing server</td>
<td>DMZ</td>
<td>2911/UDP</td>
<td>Connection must be configured to use Unicast. Do not use the "Link Supports Multicast Traffic" option.</td>
</tr>
<tr>
<td>Secure Host/ Network</td>
<td>Destination Host/ Network</td>
<td>Interface</td>
<td>Ports/Service</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Publishing server</td>
<td>Subscribing server</td>
<td>PCN</td>
<td>2911/UDP</td>
<td>Connection must be configured to use Unicast. Do not use the "Link Supports Multicast Traffic" option.</td>
</tr>
<tr>
<td>Subscribing server</td>
<td>Publishing server</td>
<td>DMZ</td>
<td>50001/TCP</td>
<td></td>
</tr>
<tr>
<td>Subscribing server</td>
<td>Publishing server</td>
<td>DMZ</td>
<td>50003/TCP</td>
<td></td>
</tr>
<tr>
<td>Publishing server</td>
<td>Subscribing server</td>
<td>PCN</td>
<td>50002/TCP</td>
<td></td>
</tr>
<tr>
<td>Publishing server</td>
<td>Subscribing server</td>
<td>PCN</td>
<td>50004/TCP</td>
<td></td>
</tr>
</tbody>
</table>

Note that the password for the Windows mng r local account must be the same on all servers in a DSA system.

In addition, note that this section refers to Point and Notification DSA traffic and does not include usage of the DSA Alarm Event Report.

11.5.2 File shares

This section describes the firewall access and account requirements for file shares.

File shares provide access to files for remote systems, such as gas measurement systems, and are used by a number of the systems described in the following sections.

Note that the following directory has a file share configured that is used by the "Alarm and Event DSA" report.

```
ProgramData\Honeywell\Experion PKS\Server\Data\Report
```

The file share is used by the "Alarm and Event DSA" report to perform the following:

- Allow the report output to be viewed from a remote Station. Read permissions are granted to the generic Windows Users group for this purpose. If all operator accounts are contained within the same group, then access can be further reduced by only giving that group read access to this directory.
- Allow all temporary information to be retrieved from remote servers when running a report across multiple servers. Read and Write permissions are granted to the Honeywell Product Administrators group for this purpose.

The following image illustrates a server in the DMZ accessing files from a server in the process control network (PCN).
The following table displays the firewall access requirements if both systems are running Windows 2000 or later.

<table>
<thead>
<tr>
<th>Secure Host/Network</th>
<th>Destination Host/Network</th>
<th>Interface</th>
<th>Ports/Service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>File share client</td>
<td>File share server</td>
<td>DMZ</td>
<td>445/TCP</td>
<td></td>
</tr>
</tbody>
</table>

11.5.3 Folder shares and permissions

The following is a list of folder shares and permissions set by the Experion LX installation.

Share permissions for shares created by Server-Client install

<table>
<thead>
<tr>
<th>Account Permission</th>
<th>Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Servers</td>
<td>Full Control</td>
</tr>
<tr>
<td>Product Administrators</td>
<td>Full Control</td>
</tr>
<tr>
<td>Local Engineers</td>
<td>Change and Read</td>
</tr>
<tr>
<td>Local Supervisors</td>
<td>Read</td>
</tr>
<tr>
<td>Local Operators</td>
<td>Read</td>
</tr>
<tr>
<td>Local Ack View Only Users</td>
<td>Read</td>
</tr>
<tr>
<td>Local View Only Users</td>
<td>Read</td>
</tr>
</tbody>
</table>

Shares created by Server-Client install

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Nodes</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>C:\ProgramData\Honeywell\Experion PKS\Client\Abstract</td>
<td>Server, Console Station, and Flex Station</td>
<td>Contains users custom displays and is used by File Replication to replicate abstracts to Backup Server, Console Stations and other nodes as configured by user</td>
</tr>
<tr>
<td>Checkpoint</td>
<td>C:\ProgramData\Honeywell\Experion PKS\CheckPoint</td>
<td>Nodes: Server and Console Station</td>
<td>Used by File Replication to replicate contents to Backup Server and Console Stations</td>
</tr>
<tr>
<td>DisplayShare1</td>
<td>C:\Program Files(x86)\Honeywell\Experion PKS\Client\System\R500</td>
<td>Server</td>
<td>Contains the system displays, this share is used by a component in Configuration Studio</td>
</tr>
<tr>
<td>DisplayShare2</td>
<td>C:\ProgramData\Honeywell\Experion PKS\Client\Abstract</td>
<td>Server</td>
<td>Contains the users custom displays, this share is used by a component in Configuration Studio</td>
</tr>
<tr>
<td>EFM</td>
<td>C:\ProgramData\Honeywell\Experion PKS\server\data\efm</td>
<td>Server</td>
<td>Contains the exported EFM data for meters.</td>
</tr>
</tbody>
</table>

⚠️ **Attention**

The location is configurable; if the location changes, this share might not be used.
<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Nodes</th>
<th>Usage</th>
<th>Account</th>
<th>Permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCI Security</td>
<td><code>C:\ProgramData\Honeywell\ProductConfig\Security</code></td>
<td>• APP • EAS • ESC • ESCe • Flex • ESVT • ESV • SCE</td>
<td>General security including HCI.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mapping</td>
<td><code>C:\ProgramData\Honeywell\Experion PKS\Server\data\mapping</code></td>
<td>Server and Console Station</td>
<td>Contains mapping files for various Point Servers, and is used by File Replication to replicate to Backup Server and Console Stations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qbfiles</td>
<td><code>C:\ProgramData\Honeywell\Experion PKS\Server\user\qbfiles</code></td>
<td>Server</td>
<td>Used by Quick Builder for downloads and uploads to the Server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QDB</td>
<td><code>C:\ProgramData\Honeywell\Experion PKS\Server\data\qdb</code></td>
<td>Server</td>
<td>The Quick Builder database for the server is located in this directory, and is used by File Replication to replicate the QDB file(s) to the Backup Server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td><code>C:\ProgramData\Honeywell\Experion PKS\Server\data\Report</code></td>
<td>Server and Console Station</td>
<td>Output from Experion LX Reports are stored in this directory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Views</td>
<td><code>C:\ProgramData\Honeywell\Experion PKS\Server\data\views</code></td>
<td>Server and Console Station</td>
<td>Contains view definitions for Alarm, System Alarm, Event, Message, Alert and SOE Summary displays, and is used by File Replication to replicate to the Backup Server and Console Stations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shares created and permissions created by Experion Tools install

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Nodes</th>
<th>Usage</th>
<th>Account</th>
<th>Permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYBRID</td>
<td><code>C:\ProgramData\Honeywell\Experion PKS\Engineering Tools</code></td>
<td>• Server • Flex Station • Console Station • SCE</td>
<td>Used by DBAdmin for database synchronization and replication purposes</td>
<td>EXPSqlSVC</td>
<td>Change, Read</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Product Administrators</td>
<td>FULL, change, Read</td>
</tr>
<tr>
<td>CPBASE</td>
<td><code>C:\ProgramData\Honeywell\Experion PKS\CheckPointBase</code></td>
<td>Server</td>
<td>Checkpoint files are stored here and used during server replication and other checkpoint related tasks</td>
<td>Local Operators</td>
<td>Read and change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Local Engineers</td>
<td>Read and change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Local Supervisors</td>
<td>Read and change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Product Administrators</td>
<td>Full, Change, Read</td>
</tr>
</tbody>
</table>
11.5.4 Enterprise model update

The Enterprise Model Builder Database (EMDB) is a system-wide database that stores information on assets, system alarms and alarm groups.

In the following example, the server in the process control network (PCN) stores the Enterprise Model database, but changes are made from an engineering Station in the PCN, and a server in the DMZ uses the Enterprise Model runtime. Changes are made in the offline database and downloaded to servers using the Enterprise Model runtime.

The following firewall access is required to download the Enterprise Model runtime.
<table>
<thead>
<tr>
<th>Secure Host/ Network</th>
<th>Destination Host/ Network</th>
<th>Interface</th>
<th>Ports/Service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Station</td>
<td>DMZ server</td>
<td>PCN</td>
<td>2909/TCP</td>
<td></td>
</tr>
<tr>
<td>Engineering Station</td>
<td>DMZ server</td>
<td>PCN</td>
<td>2910/TCP</td>
<td></td>
</tr>
</tbody>
</table>

In addition to this access, the DMZ server needs access to the file share on the PCN server. The DMZ server is the file share client and the PCN server is the file share server. Firewall access requirements are described in section “File shares” on page 91.

Note the following account requirements:

- The Windows mngr local account on the DMZ server and PCN server must have the same password.
- The DMZ server needs to authenticate against the Engineering Station. If the System Wide Settings option Require user name and password for Quick Builder and Control Builder downloads is:
 - Selected
 Ensure that both machines have the same account and password configured. The account name must be the same account name that was used to log into Configuration Studio. The account must also belong to the “Product Administrators” group on the DMZ server, and be configured as an Experion operator account with at least ENGR access rights.
 - Not selected
 Ensure that the password for the Windows mngr local account is the same on the DMZ and PCN servers

11.5.5 eServer

An eServer provides read-only access to Experion graphics from a web client.

There are two types of eServer clients: Premium Access and Standard Access. Both provide read-only process graphics without the need for any re-engineering. Premium access provides graphics with data that updates as well as active navigation links. Standard Access graphics do not support data updates or any other type of user interaction.

The following image illustrates the eServer client in the business network, connecting to an eServer in the DMZ.
The following table displays the firewall access requirements for eServer.

<table>
<thead>
<tr>
<th>Secure Host/ Network</th>
<th>Destination Host/ Network</th>
<th>Interface</th>
<th>Ports/Service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>eServer client</td>
<td>eServer</td>
<td>Business network</td>
<td>80/TCP</td>
<td>HTTP</td>
</tr>
<tr>
<td>eServer client</td>
<td>eServer</td>
<td>Business network</td>
<td>50000/TCP</td>
<td>Premium Access client only</td>
</tr>
</tbody>
</table>

In addition to these access requirements, the eServer is a DSA node that subscribes to the publishing redundant Engineering Stations. Firewall access and Windows account requirements are described in the section “Distributed system architecture”.

The default eServer configuration allows anonymous access for clients. If authentication is required for access to eServer, the interactive account being used on the eServer client needs to be authenticated on eServer.

Optionally eServer might use the Enterprise Model runtime, with the Enterprise Model database on the redundant Engineering Stations. Firewall access and account requirements are described in the section “Enterprise model update” on page 94.

11.5.6 Remote access for Station and Configuration Studio

If business network access is required to Configuration Studio or Station, you should set up a Remote Engineering and Station Server and use Microsoft Terminal Services. For information, refer to the section "Configuring Remote Engineering and Station Server" in the Server and Client Configuration Guide.

Because of the security risks and firewall access requirements, Honeywell does not support Station or Configuration Studio connected directly to the process control network (PCN) or DMZ. Running Terminal Services directly on the Experion LX server is also not supported because Terminal Services consumes a significant portion of the fixed size operating system "session space" resource. Exhausting this resource can stop the Experion LX server from starting correctly.

The following image illustrates a remote client connected to the Terminal Services running on the Remote Engineering and Station Server in the DMZ, which obtains information from a redundant Experion LX server in the PCN.
The firewall access requirements between the Remote Engineering and Station Server and the remote client are displayed in the following table.

<table>
<thead>
<tr>
<th>Secure Host/ Network</th>
<th>Destination Host/ Network</th>
<th>Interface</th>
<th>Ports/Service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering client</td>
<td>Remote Engineering and Station Server</td>
<td>Business network</td>
<td>3389/TCP</td>
<td>Microsoft Terminal Services</td>
</tr>
</tbody>
</table>

The user on the remote client needs to log on to the Remote Engineering and Station Server with an account that can be authenticated in the Remote Engineering and Station Server's domain.

If Station access is required on the business network, Station runs on the Remote Engineering and Station Server, connecting to the redundant Experion LX server in the PCN.

If Configuration Studio access is required, both Station and Configuration Studio run on the Remote Engineering and Station Server. The firewall access requirements are described in the following table.

<table>
<thead>
<tr>
<th>Secure host/network</th>
<th>Destination host/network</th>
<th>Interface</th>
<th>Ports/service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Engineering and Station Server</td>
<td>Redundant Experion LX server</td>
<td>DMZ</td>
<td>12321/UDP</td>
<td>Required for embedded charts. Client nodes viewing embedded charts over DSA can also be a source host.</td>
</tr>
<tr>
<td>Remote Engineering and Station Server</td>
<td>Redundant Experion LX server</td>
<td>DMZ</td>
<td>55556/TCP</td>
<td>Required for embedded charts. Client nodes viewing embedded charts over DSA can also be a source host.</td>
</tr>
<tr>
<td>Remote Engineering and Station Server</td>
<td>Redundant Experion LX server</td>
<td>DMZ</td>
<td>55563/TCP</td>
<td>Required for embedded charts. Client nodes viewing embedded charts over DSA can also be a source host.</td>
</tr>
<tr>
<td>Remote Engineering and Station Server</td>
<td>Redundant Experion LX server</td>
<td>DMZ</td>
<td>55550/TCP</td>
<td>Required for embedded charts. Client nodes viewing embedded charts over DSA can also be a source host.</td>
</tr>
<tr>
<td>Remote Engineering and Station Server</td>
<td>Redundant Experion LX server</td>
<td>DMZ</td>
<td>55557/TCP</td>
<td>Required for embedded charts. Client nodes viewing embedded charts over DSA can also be a source host.</td>
</tr>
<tr>
<td>Remote Engineering and Station Server</td>
<td>Redundant Experion LX server</td>
<td>DMZ</td>
<td>1433/TCP</td>
<td>This is the default MS SQL server port, required for embedded charts. Client nodes viewing embedded charts over DSA can also be a source host.</td>
</tr>
<tr>
<td>Remote Engineering and Station Server</td>
<td>Redundant Experion LX server</td>
<td>PCN</td>
<td>40209/TCP</td>
<td>Configuration Studio tasks that invoke some Station displays, such as the DSA configuration display.</td>
</tr>
<tr>
<td>Remote Engineering and Station Server</td>
<td>Redundant Experion LX server</td>
<td>PCN</td>
<td>40200/TCP</td>
<td>Configure Alarm Suppression task within Configuration Studio.</td>
</tr>
<tr>
<td>Remote Engineering and Station Server</td>
<td>Redundant Experion LX server</td>
<td>DMZ</td>
<td>Echo/ICMP</td>
<td>Optionally used to verify which server is currently active. It can be disabled by a configuration option.</td>
</tr>
<tr>
<td>Secure host/network</td>
<td>Destination host/network</td>
<td>Interface</td>
<td>Ports/service</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>Redundant Experion LX server</td>
<td>Remote Engineering and Station Server</td>
<td>PCN</td>
<td>Echo/ICMP</td>
<td>Optionally used to verify which server is currently active. It can be disabled by a configuration option.</td>
</tr>
<tr>
<td>Remote Engineering and Station Server</td>
<td>Redundant Experion LX server</td>
<td>PCN</td>
<td>1433/TCP</td>
<td>SQL Server access (Configuration Studio only).</td>
</tr>
<tr>
<td>Remote Engineering and Station Server</td>
<td>Redundant Experion LX server</td>
<td>PCN</td>
<td>2909/TCP</td>
<td></td>
</tr>
<tr>
<td>Remote Engineering and Station Server</td>
<td>Redundant Experion LX server</td>
<td>PCN</td>
<td>2910/TCP</td>
<td>Configuration Studio only.</td>
</tr>
<tr>
<td>Remote Engineering and Station Server</td>
<td>Redundant Experion LX server</td>
<td>PCN</td>
<td>50000/TCP</td>
<td></td>
</tr>
</tbody>
</table>

If the firewall has been configured to disable ICMP traffic, Station is able to connect to the server unless the "ping" setting in the station.ini file has been disabled. For information on changing station.ini file settings, refer to the section "Station.ini" in the chapter "Configuring stations and printers" in the Server and Client Configuration Guide.

If Configuration Studio is used on the Remote Engineering and Station Server, access to a file share on the redundant Experion LX servers is required. The Remote Engineering and Station Server is the file share client and the redundant Experion LX servers are the file share servers. For details on the firewall access requirements, refer to the section “File shares” on page 91.

When users of Configuration Studio connect to Experion LX, they must use an account that correlates to an operator on that Experion LX server.

11.5.7 Experion Application Server

When users of Configuration Studio connect to Experion, they must use an account that correlates to an operator on that Engineering Station.

The following image illustrates an Application Engineering Station in the DMZ, getting information through DSA and sharing the Enterprise Model with the engineering station in the DMZ.
The Experion Application Server is the DSA subscriber to the publishing redundant Engineering Station. The firewall access and account requirements are described in section “Distributed system architecture”.

The Experion Application Engineering Station uploads the Enterprise Model runtime from the redundant Engineering Station. The firewall access and account requirements are described in the section “Enterprise model update” on page 94.

11.5.8 Microsoft Windows Software Update Services

A Microsoft Windows Software Update Services (WSUS) server provides Microsoft Security Hot fixes to nodes on the process control network (PCN).

The following image illustrates the Microsoft WSUS in the DMZ. The Microsoft WSUS gets Security Hot fixes from the Microsoft WSUS in the business network, and provides these updates via Windows Update to servers and clients in the PCN. Under no circumstances must the DMZ server access the internet to get the updates to propagate to the PCN.
The following table displays the firewall access required between the Microsoft WSUS server in the business network and DMZ.

<table>
<thead>
<tr>
<th>Secure Host/Network</th>
<th>Destination Host/Network</th>
<th>Interface</th>
<th>Ports/Service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMZ Microsoft WSUS server</td>
<td>Microsoft WSUS server</td>
<td>DMZ</td>
<td>80/TCP</td>
<td>HTTP</td>
</tr>
</tbody>
</table>

The firewall access required between the Microsoft WSUS in the DMZ and the server and client nodes in the PCN is displayed in the following table.

<table>
<thead>
<tr>
<th>Secure Host/Network</th>
<th>Destination Host/Network</th>
<th>Interface</th>
<th>Ports/Service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCN server or client</td>
<td>DMZ Microsoft WSUS server</td>
<td>PCN</td>
<td>80/TCP</td>
<td>HTTP</td>
</tr>
</tbody>
</table>

11.5.9 Antivirus update server

The Antivirus Update Server provides DAT file updates to nodes on the process control network (PCN). The following image illustrates an Antivirus Update Server in the DMZ. The Antivirus Update Server gets antivirus DAT file updates from the Antivirus Update Server in the business network. In this way updated DAT files are provided to servers and clients in the PCN. Under no circumstances should the DMZ server access the internet to get the updates to propagate to the PCN.
There are two supported methods for distributing the DAT files: FTP and HTTP. You can use either of these methods.

The firewall access required between the Antivirus Update Server in the business network and DMZ is displayed in the following table.

<table>
<thead>
<tr>
<th>Secure Host/Network</th>
<th>Destination Host/Network</th>
<th>Interface</th>
<th>Ports/Service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMZ Antivirus Update server</td>
<td>Antivirus Update server</td>
<td>DMZ</td>
<td>80/TCP</td>
<td>HTTP</td>
</tr>
<tr>
<td>DMZ Antivirus Update server</td>
<td>Antivirus Update server</td>
<td>DMZ</td>
<td>21/TCP</td>
<td>FTP</td>
</tr>
</tbody>
</table>

The firewall access required between the Antivirus Update Server in the DMZ and the server and client nodes in the PCN is displayed in the following table.

<table>
<thead>
<tr>
<th>Secure Host/Network</th>
<th>Destination Host/Network</th>
<th>Interface</th>
<th>Ports/Service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCN server or client</td>
<td>DMZ Antivirus Update server</td>
<td>PCN</td>
<td>80/TCP</td>
<td>HTTP</td>
</tr>
<tr>
<td>PCN server or client</td>
<td>DMZ Antivirus Update server</td>
<td>PCN</td>
<td>21/TCP</td>
<td>FTP</td>
</tr>
</tbody>
</table>

11.5.10 PHD

PHD is Honeywell’s advanced historian, providing distributed data collection, and data consolidation. PHD supports a wide range of network topologies. This section describes the firewall access and account requirements of two possible topologies with different levels of complexity and security.

The firewall access requirements shown in this section apply to PHD Release 202 and later only. Earlier versions of PHD have different firewall access requirements.
High security configuration: PHD Peer Server in DMZ

The following image illustrates a PHD Peer Server in the DMZ gets data from a PHD Shadow Server in the process control network (PCN). The PHD Peer and PHD Shadow servers each have an SQL database. A PHD Configuration Tool in the business network is used to configure the PHD Peer Server, while a PHD Configuration Tool in the PCN is used to configure the PHD Shadow Server and Collectors.

The firewall access requirements for this configuration are minimal. A less complex topology that balances ease of configuration with somewhat less network security (because more ports need to be opened in the firewall) is shown in “Typical configuration: PHD Shadow Server in DMZ.”

<table>
<thead>
<tr>
<th>Secure Host/Network</th>
<th>Destination Host/Network</th>
<th>Interface</th>
<th>Ports/Service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Peer Server</td>
<td>PHD Shadow Server</td>
<td>DMZ</td>
<td>49500/TCP</td>
<td>1st RDI. Each RDI has a port</td>
</tr>
<tr>
<td>PHD Peer Server</td>
<td>PHD Shadow Server</td>
<td>DMZ</td>
<td>49501/TCP</td>
<td>2nd RDI</td>
</tr>
</tbody>
</table>

The firewall access requirements for communicating with the PHD Peer Server are as follows. The port numbers displayed in the following table indicate the default settings, which can be modified.

The firewall access requirements for the connection between the PHD Desktop and the PHD Peer Server are as follows. The port numbers displayed in the following table indicate the default settings, which can be modified. The exception is port 445, which is fixed.
<table>
<thead>
<tr>
<th>Secure Host/ Network</th>
<th>Destination Host/ Network</th>
<th>Interface</th>
<th>Ports/Service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Desktop</td>
<td>PHD Peer Server</td>
<td>Business Domain</td>
<td>3100/TCP</td>
<td>Process Trend, Automation Object via Standard PHD API</td>
</tr>
<tr>
<td>PHD Desktop</td>
<td>PHD Peer Server</td>
<td>Business Domain</td>
<td>3150/TCP</td>
<td>Process Trend, Automation Object via Standard PHD API</td>
</tr>
<tr>
<td>PHD Desktop</td>
<td>PHD Peer Server</td>
<td>Business Domain</td>
<td>445/TCP</td>
<td></td>
</tr>
<tr>
<td>PHD Desktop</td>
<td>PHD Peer Server</td>
<td>Business Domain</td>
<td>1521/TCP</td>
<td>Tag Explorer.</td>
</tr>
</tbody>
</table>

Typical configuration: PHD Shadow Server in DMZ

The following image illustrates a Shadow Server in the DMZ gets data from redundant PHD Collectors in the PCN. The PHD Configuration SQL database is on the Shadow Server. The PHD Configuration Tool is used to configure PHD in the PCN.

![Diagram of Shadow Server in DMZ](image)

This configuration has reduced SQL database license and system administration requirements relative to the topology displayed in “High security configuration: PHD Peer Server in DMZ”. However, additional ports need to be opened in the firewall to support communication with the SQL database. Furthermore, tag and user updates from the Shadow to the Collectors require specific NT authentication ports to be open.

The firewall access requirements for the PHD Configuration Tool to do an update are as follows. Ports are required for communication with the SQL database and for sending tag and user updates from the PHD Shadow server to both the PHD Collectors. The port numbers displayed in the following table indicate default settings, which can be modified. The exception is port 445, which is fixed. Note that port 3100 can be modified but must be the same on the PHD Shadow Server and both PHD Collectors.
<table>
<thead>
<tr>
<th>Secure Host/ Network</th>
<th>Destination Host/ Network</th>
<th>Interface</th>
<th>Ports/Service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Configuration Tool</td>
<td>PHD Shadow Server</td>
<td>Business Network</td>
<td>1521/TCP</td>
<td>SQL</td>
</tr>
<tr>
<td>PHD Configuration Tool</td>
<td>PHD Shadow Server</td>
<td>Business Network</td>
<td>3100/TCP</td>
<td></td>
</tr>
<tr>
<td>PHD Configuration Tool</td>
<td>PHD Shadow Server</td>
<td>Business Network</td>
<td>445/TCP</td>
<td></td>
</tr>
<tr>
<td>PHD Shadow Server</td>
<td>PHD Active Collector</td>
<td>DMZ</td>
<td>3100/TCP</td>
<td></td>
</tr>
<tr>
<td>PHD Shadow Server</td>
<td>PHD Active Collector</td>
<td>DMZ</td>
<td>445/TCP</td>
<td></td>
</tr>
<tr>
<td>PHD Active Collector</td>
<td>PHD Shadow Server</td>
<td>PCN</td>
<td>1521/TCP</td>
<td>SQL</td>
</tr>
<tr>
<td>PHD Shadow Server</td>
<td>PHD Standby Collector</td>
<td>DMZ</td>
<td>3100/TCP</td>
<td></td>
</tr>
<tr>
<td>PHD Shadow Server</td>
<td>PHD Standby Collector</td>
<td>DMZ</td>
<td>445/TCP</td>
<td></td>
</tr>
<tr>
<td>PHD Standby Collector</td>
<td>PHD Shadow Server</td>
<td>PCN</td>
<td>1521/TCP</td>
<td>SQL</td>
</tr>
</tbody>
</table>

Port 445 is used for many Windows functions, including authentication and Named Pipes. For more information, refer to the Microsoft Knowledgebase Article Q179442. Starting with Release 210, PHD can be configured to use either Named Pipes (the default method) or Secure Sockets to pass authentication information. Both methods require communication using port 445. Named Pipes use port 445 for both authentication and data transfer. Secure Sockets use port 445 for authentication.

The firewall access requirements for the connection between the PHD Desktop and the PHD Shadow Server are as follows. The port numbers shown in the following table are default settings, which can be modified. The exception is port 445, which is fixed.

<table>
<thead>
<tr>
<th>Secure Host/ Network</th>
<th>Destination Host/ Network</th>
<th>Interface</th>
<th>Ports/Service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Desktop</td>
<td>PHD Shadow Server</td>
<td>Business Domain</td>
<td>3100/TCP</td>
<td>Process Trend, Automation Object through Standard PHD API</td>
</tr>
<tr>
<td>PHD Desktop</td>
<td>PHD Shadow Server</td>
<td>Business Domain</td>
<td>3150/TCP</td>
<td>Process Trend, Automation Object through Standard PHD API</td>
</tr>
<tr>
<td>PHD Desktop</td>
<td>PHD Shadow Server</td>
<td>Business Domain</td>
<td>445/TCP</td>
<td></td>
</tr>
<tr>
<td>PHD Desktop</td>
<td>PHD Active Collector</td>
<td>Business Domain</td>
<td>1521/TCP</td>
<td>Tag Explorer (optional)</td>
</tr>
</tbody>
</table>

Two approaches can be used for communication between a PHD Collector and a PHD Shadow Server: the Gateway RDI, which supports peer-to-peer communication, or the Shadow RDI.

- The Gateway RDI firewall access requirements are displayed in the “High security configuration: PHD Peer Server in DMZ”.
- The Shadow RDI is used in conjunction with Robust Data Collection (RDC) as displayed in this topology. The firewall access requirements for the Shadow RDI are as follows. The port numbers displayed in the following table are default settings, which can be modified.

<table>
<thead>
<tr>
<th>Secure Host/ Network</th>
<th>Destination Host/ Network</th>
<th>Interface</th>
<th>Ports/Service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Active Collector</td>
<td>PHD Shadow Server</td>
<td>PCN</td>
<td>54000/TCP</td>
<td>1st RDI, each RDI has a separate set of ports</td>
</tr>
</tbody>
</table>
PHD Security Account Requirements

There are two client security models for PHD: standard and integrated NT security:

- With standard security, separate logins are required for the PHD Configuration Tool, PHD Data Access, and SQL.
- With integrated NT security, the Windows login is assigned to a Windows local group that is granted permissions to SQL. A secondary login is not required.

The service log on account used by the PHD Server and RDI Server services on the PHD Shadow and PHD collectors must be an account that belongs to the Administrators and PHD_MANAGER local groups of the machine. For ease of administration it is recommended that this be a domain account.
11.6 Specifying communication ports for Network API clients

By modifying the services file for client nodes, it is possible to identify specific ports so network API clients only send out requests on those ports. This allows client nodes and server nodes to be separated by a firewall and still communicate without having to open all ports on the client node so that it can pass UDP packets.

You must open the appropriate UDP ports (server and client) on any firewall the client must go through to reach the server. This includes any firewalls installed as part of the operating system or third party product as well as hardware firewalls.

Specifying client outbound ports in the services file

To specify outbound ports on the client node, perform the following:

- Open the services file from the following location.

 `C:\windows\system32\drivers\etc\services`

- Add the following to the services file.

  ```
  hscnetapi_low_port <port number low>/udp
  # Lowest UDP port for use with the Honeywell Experion LX Network API
  hscnetapi_high_port <port number high>/udp
  # Highest UDP port for use with the Honeywell Experion LX Network API
  ```

Ports for client nodes

Following are requirements for client node outbound ports.

- Port numbers can range from 1 to 65535, but ideally start higher than 3000.
- Verify you do not use any port numbers already listed in the services file.
- The `<port number low>` value must be lower than the `<port number high>` value.

Ports for server nodes

The ports used by the server to provide the Network API services are defined in the hsc_nif and hsc_nif_write entries in the services file on the server. By default hsc_nif is 50000/UDP (read requests) and hsc_nif_write is 50001/UDP (write requests). If you modify the hsc_nif entry, you must also perform the following:

- Edit the Server Port in the hscnetapi.ini
- Copy the hscnetapi.ini to the C:\Windows directory on all clients

The read port must be set the same value on all servers so that the clients can connect to it through the hscnetapi.ini change. However, the write port can be different on all servers, in addition, no client side hscnetapi.ini change is required to be made for changing the write port.

SQL Ports for the Experion Server

The default instance of SQL is used for the Experion LX database. The default instance of SQL uses port 1433 for sqlserver.exe and 1434 for sqlbrowser.exe.

Ports for System Management

System Management uses the following two reserved ports.

- 3456: SRP point to point TCP listener – created on demand for limited time while remote node needs to synchronize.
- 51967: SRP multicast UDP port
ESM Ports

ESM opens up the firewall for mostly specific applications and a few selected ports.

For nodes hosting ESM server/SQL Express

ESM uses SQL Express. On the ESM Server sqlbrowser.exe uses port 1434. The port that sqlserver.exe uses is dynamically assigned for named instances of SQL. ESM uses a named instance of sql. So the port number for sqlserver.exe cannot be specified.

The applications for which the Firewall is opened on nodes hosting the ESM Server/SQL Express are as follows:

- sqlExpressPath = C:\Program Files(x86)\Microsoft SQL Server\MSSQL_10_50.SQLEXPRESS_ESM\MSSQL\Binn \sqlservr.exe
- sqlBrowserPath = C:\Program Files(x86)\Microsoft SQL Server\90\Shared\sqlbrowser.exe
- SvrHostPath = C:\Program Files(x86)\Honeywell\ANCIM\serverhost.exe

For all other Experion nodes

On all Experion LX nodes, the following applications open up the firewall.

- AgentHostPath = C:\Program Files(x86)\Honeywell\ANCIM\Agenthost.exe
- Currently ServerHost.exe and AgentHost.exe communicate using WCF on ports 5016 and 5017.
11.7 Allowing EMDB access between network levels

Use one of the options described in the following table, to communicate between network levels separated by a firewall (for example, between level 2/3 and level 4, or between level 2 and level 3).

<table>
<thead>
<tr>
<th>Option</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open the firewall to the extent that it allows downloads from the EMDB to all relevant clusters.</td>
<td>Your network security policies may not allow this option.</td>
</tr>
<tr>
<td>Place the EMDB in the DMZ or on the higher level, and ensure that the relevant servers can access the file share on the EMDB.</td>
<td>Security policies may allow file share access from lower levels to higher levels, but not vice versa. Similarly, security policies may allow various levels to have access to file shares in the DMZ, but not vice versa.</td>
</tr>
<tr>
<td>Create a multi-system topology, with at least one system for the lower levels and one system for the higher levels.</td>
<td>The disadvantage of this option is that you need to manually keep your enterprise models sufficiently synchronized to allow the sharing of assets, point data and alarms.</td>
</tr>
</tbody>
</table>
11.8 Connecting other nodes to the process control network

There may be a requirement to connect non-Honeywell nodes to the process control network (PCN). This includes permanently connected computers associated with equipment such as analyzers, turbines, compressors, or metering systems, as well as laptop computers that are temporarily connected to the process control network for configuration purposes.

Laptop computers

The portability of laptops poses a particular risk, as they can become infected elsewhere with malicious agents such as viruses or worms and spread these to the PCN.

As it is not possible to completely mitigate against this risk, Honeywell recommends you not to connect laptop computers to the PCN. Instead, you must adopt other approaches such as using the Terminal Server in the DMZ when you need to make configuration changes.

If this is not possible, you should check the state of a laptop before allowing it to be connected to the PCN. As a minimum you must perform the following:

- Check the patch level of the operating system. If it is running Microsoft Windows, ensure that all current security hot fixes have been installed.
- Check the antivirus software on the laptop. The latest antivirus engine and virus definition files must be installed and properly configured.
- Perform a full system virus scan and view the log file to check that no files or directories were skipped, and that the virus scan successfully completed.
- Audit the software on the laptop to ensure compatibility of the laptop software with the control system software.

These audits and checks must be performed by a qualified independent person. The audit must not be undertaken by the user of the laptop. Standards for security hot fixes, antivirus software and compatible software must be in place before the audit is performed.

Once the state of the laptop has been verified, it can be connected to the PCN. If the laptop is disconnected from the PCN at any time and connected elsewhere, it must be checked again prior to reconnecting. It is strongly recommended that laptops not be used for web browsing prior to connection to the PCN.

Permanently connected non-Honeywell computers

Non-Honeywell computers connected to the PCN must conform to the recommendations in this document. This includes at a minimum:

- Up-to-date antivirus software
- Up-to-date Microsoft security hot fixes
- Strong passwords for all accounts
- A "least privilege" access model for users of the computer: users should only have access to resources required to perform their task.
11.9 Securing network equipment

The configuration of network equipment such as switches, routers, and firewalls is a critical part of the security for a process control network. Each piece of this equipment must have a unique name and be secured by a strong password.

During normal operation, do not enable HTTP or Telnet on devices that support these features. However, if substantial re-configuration is needed, they may be enabled for the duration of the maintenance.

Unused physical ports on the process control network's infrastructure equipment (for example, switches and routers) should be disabled and then only enabled when needed through your site's change management procedure.
11.10 Domain name servers

Whenever a TCP connection (that is, a DSA node, Station or other client tool) is made, the system has to convert the user-provided host name into an IP address. This is usually performed by the Domain Name Server (DNS), a service generally hosted by the domain controller. In turn, this DNS consults other DNS systems, both internal and external on the Internet to resolve unknown names. There is a well-known attack method, known as cache poisoning, which results in incorrect resolution, generally aimed at leading web browsers to rogue sites which causes malware to be downloaded. Since users should not be web browsing from within the control network, the intended attack is not successful, but a possible side affect is that clients are unable to find the host, resulting in Station or DSA nodes being unable to connect.

The mitigating actions include the following:

- Isolating the process control network (PCN) DNS from the business LAN using firewall protection
- Hardening the DNS, W200x has a registry setting which causes the DNS to reject some false updates.
- Using the local hosts file on each client machine in place of a DNS to perform the resolution.

Use of the hosts file provides protection from DNS poisoning attacks, but has some administrative disadvantages in that each client must be manually updated if IP addresses change. One approach is to have a central copy of hosts which is copied to each node when required. This also acts as a backup should an individual hosts file become corrupted.

Unfortunately some malware also targets the hosts file, usually adding its own entries. This threat is greatly reduced by the presence of anti-virus software, by setting tight file permissions on the file (by default only Administrators can modify it), and by marking the file as read-only. If corruption still occurs, then only one machine is affected; if DNS corruption occurs, then all nodes are affected.
Remote access allows connection to the process control network (PCN) from outside the business network using a corporate WAN, the Internet, or a dial-up connection. The client connects to a Remote Access Service (RAS) server placed on the business LAN or in the DMZ, where authentication occurs, then uses various tools to reach the target system. Security aspects of RAS configurations are discussed in “Remote Access Server” on page 154.

The access may be used for the following:

• Perform remote control from home after normal hours or for emergency situations. In this case the client would run Station as if it were an in-house Level 4 user. This would either be through a DSA node in the DMZ (assuming there is one and that the server allows the required access) or directly to the Level 2/3 server that owns the points to be controlled.

• Perform engineering tasks on an Experion system in a remote plant. In this case, the client would connect to the Engineering Terminal Services Server (the RESS described in section “Remote access for Station and Configuration Studio” on page 96) and then proceed as a normal Level 4 user.

• Perform remote support by Honeywell engineers or other support staff. In this instance, more direct access to the target machine is needed and tools such as Altiris Carbon Copy or Remote Administrator (Radmin) are used.

If an RAS server outside the PCN is used then additional ports need to be opened in the firewall to allow the Carbon Copy (or other tool) client and server to communicate. These ports would be shut off as soon as the support project was complete. An alternative, and simpler, method is to connect a modem directly to the target machine. This limits the remote access to the target, but places a modem within the protected PCN area, which must then be carefully managed and disconnected when not in use. It may also be beneficial to have a special account that is used only by the remote support user and is disabled when connection is not expected. You can achieve this automatically by specifying a short password age time.

Where modems are used regularly for dial-in purposes, they should be set for auto re-dial if possible. This only allows calls to pre-configured phone numbers, thereby preventing attacks from unknown sources.
11.12 Dual-homed computers

Honeywell recommends you to not allow any system to have a network connection to both the process control and business networks. All connections between the process control network and the business network must be through the firewall.
11.13 Port scanning

Only allow port scanning at the perimeter of your process control network (PCN), that is, from outside the firewall, pointing into the DMZ. Do not allow port scanning of online systems within the PCN, as this could lead not only to performance degradation, but to system failure.
11.14 Configuring secure communication settings

Before migration if you have unassigned the secure nodes for operating system change, then after migration use the **Secure option** in the Secure Communications user interface to secure the unassigned nodes. For more information about securing a node, refer to the *Secure Communications User’s Guide.*
12 Securing Wireless Devices

When planning to connect wireless devices to your Experion LX system, you need to consider the topics described in this section.

This section provides high-level guidance for users with knowledge of, and experience with, installing wireless systems. It is therefore assumed that readers are familiar with terminology such as MAC address, PEAP, RADIUS, and SSID.

Related topics
“About Experion LX wireless devices” on page 118
“Radio frequency survey” on page 119
“Configuring and securing WAPs” on page 120
“Connecting wireless devices” on page 122
“Securing the OneWireless Network” on page 127
12.1 About Experion LX wireless devices

The Experion LX system includes the following wireless mobile productivity devices.

- IntelaTrac PKS for collecting field data
- Mobile Station for allowing remote access to the control system.
- Experion Mobile Access for accessing key process data and alarms on a web browser, optimized for smaller hand-held devices.

These mobile productivity devices connect through commercially available wireless access points (WAP). WAPs are typically connected to a wired network, which connects the wireless devices and servers on the wired network.

As this connection can represent a significant security risk for the servers and other parts of the wired network, it is essential that the recommendations for connecting the WAPs in this guide are followed.
12.2 Radio frequency survey

Prior to deploying wireless devices, a radio frequency (RF) survey should be carried out to determine the following:

- Areas of the facility where wireless access is needed
- Areas of the facility where wireless access must not be allowed or made available
- The number and placement of Wireless Access Points (WAPs)
- Antennae strengths for each WAP
12.3 Configuring and securing WAPs

The basic implementation of a wireless device connection is illustrated in the following image. This displays the components of the network used to secure the wireless access point (WAP). Components that communicate with the wireless devices for data are described in subsequent sections.

Connecting wireless devices

The wireless device should not connect directly to the process control network (PCN). It is recommended that the WAP be connected to a separate network segment, separated from the network by a firewall. The WAP must have access to a Microsoft Windows domain controller which is running Microsoft's Internet Authentication Service (IAS). IAS supports the 802.1x RADIUS protocol, which is used to securely authenticate the wireless device. This can be a domain controller in the PCN or the business networks.

The domain controller and IAS

The domain controller provides an additional layer of protection for the network. Traffic from the wireless device is blocked until the user has authenticated with the domain controller using RADIUS. Microsoft supports RADIUS in Microsoft Windows Server 2016 Standard as part of the Internet Authentication Services (IAS) package. For detailed guidance on configuring wireless access with RADIUS see the Microsoft Windows Server 2016 Standard documentation.

Information on RADIUS is available in RFCs 2138, 2139, 2865 and 2866 of the IETF (http://www.ietf.org).

Firewalls

When wireless devices are used on an Experion network, the firewall must be configured to only allow traffic between the following:

- The domain controller running RADIUS (refer to “The domain controller and IAS”)
- The nodes being accessed by the wireless devices
- The WAP(s)

The firewall access required between the WAP in the wireless network and domain controller running IAS is displayed in the following table.

<table>
<thead>
<tr>
<th>Secure Host/Network</th>
<th>Destination Host/Network</th>
<th>Interface</th>
<th>Ports/Service</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Access Point</td>
<td>Domain Controller IAS</td>
<td>Wireless Network</td>
<td>1812/UDP</td>
<td>RADIUS 802.1x</td>
</tr>
<tr>
<td>Wireless Access Point</td>
<td>Domain Controller IAS</td>
<td>Wireless Network</td>
<td>1813/UDP</td>
<td>RADIUS 802.1x</td>
</tr>
</tbody>
</table>
Configuring WAPs
When configuring a wireless access point (WAP) it is recommended that you perform the following:

• Configure a unique SSID. Do not use the default SSID.
• Disable SSID broadcast.
• Configure authentication for EAP authentication to the Network. PEAP is preferred.
• Configure the RADIUS server address.
• Configure for dynamic WEP.
• Configure 802.1x authentication.
• Enable MAC filtering and enter MAC addresses for wireless Stations.

For detailed configuration information refer to the setup instructions from the WAP supplier.

Wireless network interface cards
The wireless device, IntelaTrac PKS or Mobile Station, contain a wireless network interface card. The following configuration recommendations must be followed:

• Configure the proper SSID
• Configure 802.1x authentication
• Configure WEP with key supplied from WAP
• Configure Protected EAP authentication Note: both PEAP-TLS and PEAP-MS-CHAP are supported.

For more information on wireless security recommendations refer to the following links.

• http://cnscenter.future.co.kr/resource/hot-topic/wlan/1350.pdf
 (Download the Cisco Aironet Wireless LAN Security Overview document.)
• http://www.microsoft.com/technet/community/columns/cableguy/cg1202.mspx
12.4 Connecting wireless devices

This section describes the connections for wireless access in an Experion system.

IntelaTrac PKS

The IntelaTrac PKS hand-held wireless device connects to the data synchronization server. The IntelaTrac PKS interface does not require access to the process control network (PCN). It is recommended to place the data synchronization server in the wireless DMZ (Level 3.5). If no DMZ is present, then the data synchronization server should be placed on the Business Network. The following diagram shows the best practice for IntelaTrac.

![Diagram showing IntelaTrac PKS setup](image)

Note in this diagram that the WAP resides in the Wireless DMZ and IntelaTrac PKS Data Synchronization Server resides in the DMZ. IntelaTrac PKS users are authenticated with the domain controller IAS in the business network. Additional nodes are included in an IntelaTrac system, the Database Server and Decision Support Systems. It is recommended that these nodes be located in the DMZ or on the business network. For more information, refer to the *IntelaTrac PKS System Installation Guide, IntelaTrac PKS Version 2.4*.

Authentication, firewall access and wireless device configuration are described in the section “Configuring and securing WAPs” on page 120.

The firewall configuration for Data Synchronization Server and other IntelaTrac PKS system components, such as the IntelaTrack PKS database and PHD depends upon what options are being used. Details are contained in the two following documents:

- *IntelaTrac PKS System Installation Guide, IntelaTrac PKS Version 2.4*
- *Administration User's Guide, IntelaTrac PKS Version 2.4*

Refer to these documents for detailed information on the port configuration required.

Further reference information is available in the following:

Mobile Manager for Pocket PC User's Guide, IntelaTrac PKS Version 2.4

Mobile access for eServer

Mobile Station devices have three ways of connecting to Experion. Two of these provide access through an eServer. For this type of access, the eServer resides in the Level 3.5 DMZ.
eServer Standard Access

The following image illustrates the Mobile Station Access for eServer Standard.

Note in this image, the WAP resides in the wireless DMZ. The domain controller with IAS is in the business network. In general, it is a better practice to use the domain controller in the business network.

Authentication, firewall access and wireless device configuration are described in the section “Configuring and securing WAPs” on page 120. Firewall access between the eServer and Engineering Station is illustrates in the eServer topics of “Configuring the DMZ firewall” on page 89.

eServer Premium Access using Terminal Services

The following image illustrates the Mobile Station Access for eServer Premium.
Note in this image, the WAP resides in a wireless DMZ. The domain controller with IAS is in the PCN.

The eServer obtains information from the Engineering Station in the PCN via DSA. The firewall access and account requirements for DSA are described in section “Distributed system architecture”. Authentication, firewall access and wireless device configuration are described in the section “Configuring and securing WAPs” on page 120. Firewall access between the eServer and Engineering Station is displayed in the eServer topics of “Configuring the DMZ firewall” on page 89.

Mobile Station

The following image illustrates the Mobile Station.
Note in this image, the WAP resides in a wireless DMZ. The domain controller with IAS is in the business network.

Authentication, firewall access and wireless device configuration are described in the section “Configuring and securing WAPs” on page 120. Firewall access between the eServer and Engineering Station is displayed in “Remote access for Station and Configuration Studio” on page 96.

Experion Mobile Access

The following image illustrates the Experion Mobile Access.
Note in this image, the WAP resides in a wireless DMZ. The domain controller with IAS is in the business network.
12.5 Securing the OneWireless Network

Within Experion LX, the wireless process I/O is considered identical to wired process I/O in terms of data, event, and alarm information view, access, and configuration. After integrating OneWireless with Experion LX, the OneWireless components become a part of the Experion LX system.

OneWireless and Experion LX systems

The following topology diagram illustrates the OneWireless network integrated with the Experion LX system.

IEEE 802.11a/b/g WLAN network security

The IEEE 802.11a/b/g/n WLAN utilizes a combination of access control, VLAN, and encryption over Control and Provisioning of Wireless Access Points (CAPWAP) to protect the WLAN network. The configuration and security scheme of the Cisco 1552S Access Point used in the OneWireless Network is controlled by the WLAN controller. All data from Wi-Fi clients and ISA100.11a devices using the WLAN mesh are encapsulated with the CAPWAP protocol and transmitted to the WLAN Controller. The WLAN Controller removes the encapsulation and forwards the data to the appropriate consumer over the wired network. Perform the following methods of security to secure the WLAN network.

- Enable MAC address white list on the WLAN Controller to ensure that only authorized Cisco 1552S APs join the IEEE 802.11 mesh network.
- Use VLAN tagging to separate traffic between different Wi-Fi services utilizing the WLAN mesh network. Such traffic from the management VLAN must be separated. Note that the ISA100.11a backbone router in the Cisco 1552S AP resides on the management VLAN of the Cisco WLAN Controller.
- VLANs that are used to separate the traffic cannot be used as security barriers. Therefore the guests or other untrusted user traffic should not be permitted on this network. Separate APs should be set up in areas where this traffic is required and routed through the appropriate security level network.
• Enable IEEE 802.1x security for Authentication, Authorization, and Accounting (AAA) in combination with IEEE 802.11i (WPA2) to secure the Wi-Fi client network. The Microsoft version of a RADIUS server is the Internet Authentication Service or IAS, which is available free with Windows Server 2003 and is easily added to an active directory domain controller. FreeRADIUS and open source AAA server is also supported by the Cisco WLAN Controller.

• Protect the mobility group name and RAP/MAP MAC addresses as they are used in network security.

• Configure firewall access lists to provide wireless access to only legitimate subnets on the PCN.

Placement of OneWireless multinodes

Multinodes have three antennas, which are used for the following purposes.

• Wi-Fi access point
• Mesh network
• Sensor network

Multinodes must be strategically located to achieve the following within the Experion LX system.

• Form a mesh network with multiple redundant paths
• Provide dual sensor network communication paths to each field device
• Increase the Wi-Fi coverage for Wireless Worker client applications within the customer’s installation
If all the steps outlined in this document are followed, then a secure system should result. However, there is always the possibility that an attacker succeeds in circumventing all the safeguards and break in. In this case, it is important to discover the break in and prevent further damage as rapidly as possible. The more evidence that can be captured, the less the damage is likely to be and the greater the chances of identifying the intruder.

Related topics
“Using Microsoft Baseline Security Analyzer” on page 130
“Setting up and analyzing audit logs” on page 131
“Detecting network intrusion” on page 133
“Setting up an event response team” on page 134
13.1 Using Microsoft Baseline Security Analyzer

It is recommended that you download and run Microsoft Baseline Security Analyzer (MBSA) on your system. MBSA is a tool that you can run on Windows-based computers to check for common problems with security configuration. MBSA checks the operating system as well as other installation components such as Internet Information Services (IIS) and SQL Server. It also checks whether or not security updates are current.

MBSA is freely available for download from the Microsoft Web site. When run, MBSA attempts to connect to the Microsoft Web site in order to download the latest information on hot fixes, service packs, and so on. It only takes a few minutes to run and generates a series of reports on the security health of a system.
13.2 Setting up and analyzing audit logs

It is recommended that you enable the auditing of your file system and registry access. If there is a suspicion that the system is being misused, then Windows auditing provides a useful tool to track who has done what and when.

Considerations

The default action is to halt the system if the security log becomes full. This is to prevent activity occurring without any traceability. However, it also provides an opportunity for a denial of service attack.

To prevent this, either increase the log file size and review the log before it fills up, or set one of the overwrite options (for example, "Overwrite events as needed"), and check the log frequently enough to prevent loss of events.

To view the log settings, start the Event Viewer tool, select Log > Security and then select Log > Log Settings. Then change either the Maximum Log Size, or the Event Log Wrapping options.

Ensure that the audit log is regularly inspected and cleared, or else disable the security option "Audit: shut down system immediately if unable to log security audits".

Configuring the log settings to overwrite will ensure that the system never stops when the log is full but this can also be used to hide events of interest by falsely filling the log with other events. This highlights the need for regular monitoring.

You can also configure the System Event Server to send system events to the Experion LX alarm and event subsystem when certain thresholds are reached in the audit logs. For more information, refer to the chapter "Configuring system performance and event monitoring" in the Server and Client Configuration Guide.

To enable auditing

1. Set the appropriate Group policy, or log on as the Local Administrator.
2. Start the User Manager tool.
3. Select Policies > Audit and enable options of interest.
 The most useful options are likely to be:
 - Logon and Logoff - success and failure
 - Process Tracking - success and failure
 - Object access - success and failure

 This enables the auditing of file system and registry access. It is then necessary to choose the objects of interest and the user (or groups) whose actions are to be audited. Note that since it is necessary to specify an identity to audit (and by definition, it is not known who the intruder is), you must specify the group "Everyone".

To configure the auditing of file access

1. Go to Windows Explorer and select the directory or file of interest.
2. Select Properties > Security > Advanced > Auditing.
3. Then add a user, for example, "Everyone" and the access to be audited; for example, "Open failure".

To configure the auditing of registry keys

1. Run regedit32.
2. Select the key for which you want to set up auditing.
3. Select Permissions > Advanced > Auditing and add users as mentioned in the previous procedure.
To enable the auditing of Experion LX database access

1. Before starting the database service, give the "Everyone" account "Generate security audits" rights.
2. Enable audit object access.
 This will ensure that any attempt by an executable to open the Experion LX database will also generate a security log entry.
13.3 Detecting network intrusion

Network Intrusion Detection Systems (NIDS) can take many forms. NIDS can be a dedicated server on the same network branch, freeware software available under GNU or similar licenses (most of these are aimed at the UNIX world), or commercial products aimed specifically at Windows systems.

The purpose of NIDS is to scan incoming network packets and look for unusual traffic or for specific malformed packets known to be associated with attacks. If anomalies are found, NIDS take action such as raising alerts or even disconnecting the computer from the network. The latter is a dangerous option which causes its own denial of service while preventing damage from occurring to the system, by closing network ports, and so on.

Most firewalls, switches and routers have reporting facilities whereby they can report various levels of events, varying from debugging to emergency failure. These reports can be either viewed via telnet, collected by a central logging server, or be sent via e-mail to an administrator. For example, the Cisco PIX firewall and Catalyst 4500 switches can be configured to send selected levels of events to a central syslog server where further analysis can occur and significant events be detected.

Syslog servers commonly exist on Unix systems, but third party syslog services are available for Windows. They vary in functionality and cost from freeware, which simply writes to a log file, to sophisticated IDS systems which analyze the logs in detail. As well as being able to control the level of severity of events, the PIX firewall allows the suppression of individual messages. This can significantly reduce the clutter and also provides some ability to recognize common attack signatures and to raise appropriate alarms.

When configuring the logging of these network events, a balance must be kept between collecting too many acceptable events (and missing something important) and between filling storage disks and deleting information (which is subsequently needed for an intrusion investigation).

The following is a typical log from a firewall.

```
Jun 03 14:17:44 XXX.XXX.XXX.XXX local4.warn %PIX-4-106023: Deny icmp
src outside:XXX.XXX.XXX.XXX dst inside:XXX.XXX.XXX.XXX (type 0, code 0)
by access-group "outside_access_in"
Jun 03 14:17:49 XXX.XXX.XXX.XXX local4.warn %PIX-4-106023: Deny tcp
src outside:XXX.XXX.XXX.XXX dst inside:XXX.XXX.XXX.XXX by access-group
"outside_access_in"
Jun 03 14:17:51 XXX.XXX.XXX.XXX local4.warn %PIX-4-106023: Deny icmp
src outside:XXX.XXX.XXX.XXX dst inside:XXX.XXX.XXX.XXX (type 0, code
0) by access-group "outside_access_in"
Jun 03 14:17:51 XXX.XXX.XXX.XXX local4.warn %PIX-4-106023: Deny tcp
src outside:XXX.XXX.XXX.XXX dst inside:XXX.XXX.XXX.XXX by access-group
"outside_access_in"
Jun 03 14:17:51 XXX.XXX.XXX.XXX local4.warn %PIX-4-106023: Deny icmp
src outside:XXX.XXX.XXX.XXX dst inside:XXX.XXX.XXX.XXX (type 0, code
0) by access-group "outside_access_in"
Jun 03 14:17:51 XXX.XXX.XXX.XXX local4.warn %PIX-4-106023: Deny tcp
src outside:XXX.XXX.XXX.XXX dst inside:XXX.XXX.XXX.XXX by access-group
"outside_access_in"
Jun 03 14:17:51 XXX.XXX.XXX.XXX local4.warn %PIX-4-106023: Deny icmp
src outside:XXX.XXX.XXX.XXX dst inside:XXX.XXX.XXX.XXX (type 0, code
0) by access-group "outside_access_in"
Jun 03 14:17:51 XXX.XXX.XXX.XXX local4.warn %PIX-4-106023: Deny tcp
src outside:XXX.XXX.XXX.XXX dst inside:XXX.XXX.XXX.XXX by access-group
"outside_access_in"
Jun 03 14:17:51 XXX.XXX.XXX.XXX local4.warn %PIX-4-106023: Deny icmp
src outside:XXX.XXX.XXX.XXX dst inside:XXX.XXX.XXX.XXX (type 0, code
0) by access-group "outside_access_in"
Jun 03 14:17:51 XXX.XXX.XXX.XXX local4.warn %PIX-4-106023: Deny tcp
src outside:XXX.XXX.XXX.XXX dst inside:XXX.XXX.XXX.XXX by access-group
"outside_access_in"
Jun 03 14:17:51 XXX.XXX.XXX.XXX local4.warn %PIX-4-106023: Deny icmp
src outside:XXX.XXX.XXX.XXX dst inside:XXX.XXX.XXX.XXX (type 0, code
0) by access-group "outside_access_in"
Jun 03 14:17:51 XXX.XXX.XXX.XXX local4.warn %PIX-4-106023: Deny tcp
src outside:XXX.XXX.XXX.XXX dst inside:XXX.XXX.XXX.XXX by access-group
"outside_access_in"
```

Other forms of intrusion detection will search event logs looking for unusual events, or will compare the current file system to a known good image. Care must be exercised when running such tools to prevent them using too many resources and interfering with the control system.
13.4 Setting up an event response team

An event response team should be ready to handle any security breach as it occurs. Their role is to identify the attack, prevent further damage, recover from the damage and capture evidence which could be used in prosecutions. In many instances the IT department will already have such a team; they simply need to be made aware of any specific requirements of the control system.

Many Government and industry bodies and computer vendors have published good papers on this topic, which should be reviewed when building the team.

Useful references include:
- http://www.sans.org/resources/
- http://csrc.nist.gov/
- http://www.us-cert.gov/control_systems/
14 Windows Domains and Workgroups

In planning your system, you also need to consider how the Windows-based nodes in the process control network will fit into the IT infrastructure, and how users will be given access to both the process control network and the business network. This is achieved through the use of Windows domains and workgroups.

Related topics
“About domains and workgroups” on page 136
“Comparing domains and workgroups” on page 137
“Implementing domains and workgroups” on page 138
“Inter-domain trusts” on page 139
14.1 About domains and workgroups

Domains
A Windows domain is a collection of computers that share a common domain database and security policy. A domain is managed by a domain controller, the server that authenticates domain logons and that maintains the security policy and the master account database for a domain. Each domain, and each computer within that domain, has a unique name. A Domain Name Server (DNS) is used for the transparent translation of computer names to IP addresses when connections are made.

Workgroups
A workgroup, or peer-to-peer network, is a low-cost option commonly used for small business networks. In this model, computers directly communicate with each other and do not require a domain controller to manage network resources. In general, a peer-to-peer network is most appropriate for networks with a small number of computers (say, less than five); all located in the same general area. The computers in a workgroup are considered peers because they are all equal and share resources among each other without requiring a server. Users determine which data on their computer will be shared with the network. Sharing common resources allows users to print from a single printer, to access information in shared folders, and to work on a single file without transferring it to a floppy disk.
14.2 Comparing domains and workgroups

This section discusses the advantages and disadvantages of using domain and Windows workgroups.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Windows Domain</th>
<th>Windows Workgroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security level</td>
<td>Greater level of security.</td>
<td>Reduced level of security.</td>
</tr>
<tr>
<td>Ease of maintenance</td>
<td>Central database of user and global security policies. Changes in the central database are applied to all computers within the domain.</td>
<td>Users and limited security settings need to be configured separately on each computer in the workgroup.</td>
</tr>
<tr>
<td>Required effort for security maintenance</td>
<td>If your Experion LX system contains more than 5 nodes, the use of a Windows domain controller can reduce the effort and cost for maintaining the user and security configuration in the system.</td>
<td>If your Experion LX system contains only a small number of nodes (less than 5), it is feasible to manage system security without a Windows domain controller.</td>
</tr>
<tr>
<td>Windows domain controller server</td>
<td>Requires one or more separate servers to act as Windows domain controllers. An Experion LX server cannot be a Windows domain controller.</td>
<td>A Windows domain controller is not required.</td>
</tr>
<tr>
<td>Security model in Experion LX</td>
<td>You can use Integrated Security, where Experion LX users are defined within the Active Directory. Provides a consistent security model between Experion LX and the Windows operating system.</td>
<td>To use Integrated Security, users must be created on each computer, and then added to the Windows groups.</td>
</tr>
</tbody>
</table>
14.3 Implementing domains and workgroups

14.4 Inter-domain trusts

Inter-domain trusts are used to allow users in one domain to access resources on a different domain. Native Microsoft Windows Server 2016 Standard domain have implicit two-way trust relationships called transitive trusts between domains within a forest, and may have explicit trusts between domains in different forests.

Limiting inter-domain trust

It is important to limit inter-domain trust, that is, not to trust other domain users to log on unless absolutely necessary. It is recommended that you do not permit trusts between the process control network and business network domains. If no trusts exist, administrators can be assured that no access to Windows resources can be configured for users from other domains.

If trusts are necessary, then the "least access" principle should be followed: that is, only have the trusts that are required. Use a one-way trust if possible. Explicit trusts can be configured Microsoft Windows Server 2016 Standard domain.

Note that this does not prevent users from the business domain making Station connections if they provide credentials (user name and password) that are valid on the Experion LX server in the process control network domain.

If Stations do reside on the same domain as the Experion LX server then single sign-on for operators is possible; that is, Station will be able to automatically connect to Experion LX using the same credentials as those used when the operator logged onto the Station computer. For more information, refer to "Single Signon" topic under “Configuring System Security” section in the Server and Client Configuration Guide.
15 Securing access to the Windows operating system

An essential component of any security strategy for a process control network is to secure access to the operating system to ensure the following:

- Only authorized users have access to the system
- User access to files, systems, and services is limited to those necessary for the performance of their duties

Related topics

“Windows user accounts and passwords” on page 142
“Honeywell High Security Policy” on page 145
“File system and registry protection” on page 148
“System services” on page 150
“Other Microsoft services” on page 153
“Use the firewall on Microsoft Windows 10 Enterprise 2016 LTSB (x64) and Microsoft Windows Server 2016 Standard machines” on page 155
“Microsoft Windows 10 Enterprise 2016 LTSB (x64) and Microsoft Windows Server 2016 Standard registry and other settings” on page 156
15.1 Windows user accounts and passwords

Access is gained to the Windows operating system by logging onto the system using a user account name and password. This is true for both local and remote terminal services access. Because user accounts may be well known or easily guessed within an organization, the password becomes the prime vehicle for authentication. User account and password policies are therefore important security measures.

15.1.1 User account policies and settings

As a general rule you must perform the following:

- Review user accounts on a regular basis.
- Disable or delete all unused accounts.
- Disable all guest accounts.

Experion operator accounts

Experion LX operator accounts must be set up to ensure the following:

- Enable them to log in only to operator Stations.
- Do not use a shared operator account if individual accountability is required.

Use Signon Manager to modify user credentials without loss of view.

Non-operator user accounts

Accounts for engineers and others who need interactive access to server nodes for maintenance activities must be enabled to log in to all process control nodes.

New accounts

To prevent the use of default passwords, new accounts must have the "User must change" password option set until their first logon.

Where Experion LX operator-based security is configured, similar care must be taken in choosing passwords. For more information about operator-based security refer to the topic "Administering users" in the chapter "System administration" of the *Server and Client System Administration Guide*.

Administrator accounts

Microsoft best practices for security encourage disabling the built-in Administrator account, and creating a site-specific account. This is because the SID (internal id) of the Administrator account is fixed and well-known, so it provides a security vulnerability that can be exploited.

Experion LX installation now disables the Administrator account, and prompts the user for a new account name and password, setting up the new account to be the initial system administrator. As site conventions dictate, additional administrative accounts may be created later.

For more information about Administrator accounts, refer to “Administrators”.

Service and server accounts

Windows services and COM servers should run under an account with the lowest possible set of privileges. The account should not have the "Logon Interactively permitted" permission set.

The following classes of accounts are suggested in the preferred order.

- “Local Service” account
- "Network Service" account
- Local accounts with minimum rights. Most Experion LX services run under the local “mnger” or “LocalComServer” accounts.
• Domain accounts with minimum rights
• Local or domain user belonging to the Local Administrators group
• Built-in "System"

Running services under the Built-in "System" account must be avoided, as compromised processes running under this account have rights to "act as part of the operating system" and can do anything they wish on the computer.

15.1.2 Password policies and settings

The most popular technique for breaking into a system is to guess user names and passwords. Consequently, it is essential that passwords are difficult to guess and that they are changed often.

Password settings

The Honeywell High Security Policy applies the following default password policies. These may be adjusted to site requirements using domain Group Policies, modifying local machine policies, or individually controlling each account.

The settings described in the following table are suggested.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum password age</td>
<td>45 to 90 days</td>
<td>Forces the choice of a new password after this time. The setting for the Administrator account should be shorter. A maximum of 30 is recommended. NOTE: it is disruptive to system operation to force some accounts (e.g. MNGR) to change passwords frequently. For such accounts, the "Password does not expire" option should be selected. This attribute should be used as little as possible.</td>
</tr>
<tr>
<td>Minimum password age</td>
<td>1 to 5 days</td>
<td>Prevents too rapid a cycling of passwords.</td>
</tr>
<tr>
<td>Minimum password length</td>
<td>8 characters</td>
<td>Improves encryption and makes guessing harder.</td>
</tr>
<tr>
<td>Password uniqueness</td>
<td>8 to 13 old passwords</td>
<td>Prevents reuse of the same password too quickly.</td>
</tr>
<tr>
<td>Account lockout</td>
<td>10 attempts</td>
<td>Prevents continual password guessing by disabling account after the specified number of attempts. Consider disabling account lockout for operator (or other user) accounts where denial of service or loss of view would be detrimental to safety or the continued operation of the plant.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Setting</td>
<td>Comment</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Lockout duration</td>
<td>30 minutes</td>
<td>Specifies the period of time during which a user will not be able to log on following an account lockout. (Note that the administrator can re-enable the account before the expiration of the specified lockout period.)</td>
</tr>
<tr>
<td>Lockout counter</td>
<td>29 minutes</td>
<td>The time before the account lockout is reset to zero. For example, with the account lockout set at 10, and the lockout counter set at 29 minutes, lockout will occur if there are 10 invalid logon attempts within 29 minutes. Note that the lockout counter must be less than the lockout duration.</td>
</tr>
</tbody>
</table>

Strong passwords

It is recommended that you enforce strong passwords, that is, passwords consisting of at least 8 characters including one numeric. Weak passwords that are easy to guess provide an opportunity for unauthorized access. Minimum password complexity can be enforced by group policy or local password policy.

An alternative way of increasing password complexity is to recommend the use of a pass phrase, for example, "The cow jumped over the moon" rather than a password. The extra characters dramatically increase the difficulty for a hacker attempting to crack the password; it is also much easier to remember than a random collection of letters, numbers, and other characters.

Account lockout

The lockout values displayed in Table 1 in “Password settings” are those suggested by Honeywell. Additional information is available in the Microsoft "Account Lockout Best Practices - White Paper" (Account Lockout Best Practices.doc) available at the following link.

Account lockout policy must be used with caution. Although it will slow down an attempted password guessing attack; it will not prevent a determined attacker, who will capture logon packets and use cryptographic tools to break the password offline. It may also lead to a Denial of Service, where authorized users find themselves unable to log on. It is generally better to rely on strong passwords and system audit log monitoring to prevent and detect password cracking attempts.
15.2 Honeywell High Security Policy

The Honeywell High Security Policy leverages Microsoft Windows Groups and Group Policy to implement the Experion LX security model which enables you to control how programs, network resources, and the operating system behave for users and computers in your organization.

The Experion LX security model is based on roles, effectively classes of users on an Experion system. Honeywell has defined seven roles and makes use of the Microsoft-defined roles of System Administrator and User. The following table describes the roles defined by the security model.

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Administrator</td>
<td>Administers Honeywell Experion LX software: SQL administration, HCI and other component configuration</td>
</tr>
<tr>
<td>Engineer</td>
<td>Engineering functions: display creation and deployment, CAB block development, point definition</td>
</tr>
<tr>
<td>Supervisor</td>
<td>Privileged operational activities</td>
</tr>
<tr>
<td>Operator</td>
<td>Normal operational activities</td>
</tr>
<tr>
<td>Ack View-Only</td>
<td>View privilege plus acknowledge alarms</td>
</tr>
<tr>
<td>View-Only</td>
<td>View privilege</td>
</tr>
<tr>
<td>Server/Service</td>
<td>Non-interactive accounts that may be used for the identity of services that do not fit with Microsoft’s built-in accounts and servers/COM servers that need an identity to RunAs</td>
</tr>
<tr>
<td>Windows Administrator</td>
<td>Configure and maintain the Operating System and network: software installation, network settings, account creation/maintenance</td>
</tr>
<tr>
<td>User</td>
<td>No Experion LX privilege</td>
</tr>
<tr>
<td>Security Administrator</td>
<td>Configure and maintain Secure Communications</td>
</tr>
</tbody>
</table>

Windows groups are used to assign user accounts to roles, as described in the following roles group assignment table.

<table>
<thead>
<tr>
<th>Role</th>
<th>Domain account group</th>
<th>Local account group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Administrator</td>
<td>DCS Administrators</td>
<td>Product Administrators</td>
</tr>
<tr>
<td>Engineer</td>
<td>Engineers</td>
<td>Local Engineers</td>
</tr>
<tr>
<td>Supervisor</td>
<td>Supervisors</td>
<td>Local Supervisors</td>
</tr>
<tr>
<td>Operator</td>
<td>Operators</td>
<td>Local Operators</td>
</tr>
<tr>
<td>Ack View-Only</td>
<td>Ack View Only Users</td>
<td>Local Ack View Only Users</td>
</tr>
<tr>
<td>View-Only</td>
<td>View Only Users</td>
<td>Local View Only Users</td>
</tr>
<tr>
<td>Server/Service</td>
<td>DCS Domain Servers</td>
<td>Local Servers</td>
</tr>
<tr>
<td>Windows Administrator</td>
<td>Domain Admins</td>
<td>Administrators</td>
</tr>
<tr>
<td>User</td>
<td>Domain Users</td>
<td>Users</td>
</tr>
<tr>
<td>Security Administrator</td>
<td>SecureComms Administrators</td>
<td>Local SecureComms Administrators</td>
</tr>
</tbody>
</table>

By assigning a user account to a single role group, you assign the responsibilities of that role to the user. By assigning an account to multiple role groups, you authorize that user to perform activities appropriate to all assigned roles.

Permissions and privileges to local resources on each computer should always be set using local groups. These permissions will automatically apply to the equivalent global groups. Local user accounts should always be added to local groups to assign roles. Domain user accounts should always be added to global groups to assign roles. The domain accounts will inherit the permissions and privileges of the equivalent local group on each machine.
The High Security Policy provides an appropriate security configuration for each user role. The High Security Policy is based on the Windows security model, but has been tailored for use with Experion LX and related products with the addition of specialized security templates, accounts, and groups.

Attention

High Security Policy blocks a number of groups like the Windows-created group "Users" from using Experion LX. Only members of the domain or local groups Described in the table are assigned privileges within Experion LX.

15.2.1 High security policy, domains, and workgroups

The High Security Policy applies to both domain and workgroup environments, but as Windows only supports Group Policy in a domain, workgroups do not receive the full benefit of Honeywell’s High Security Policy.

If you implement:

• A domain, Windows Group Policy is used to tailor the user environment based on roles. Group Policy settings apply to every domain user regardless of the computer they are logged on to.
• A workgroup, Group Policy does not apply, however a procedure is provided in the Windows Domain and Workgroup Implementation Guide to restrict the environment of selected users and groups.

15.2.2 Honeywell high security policy installation packages

The default Experion LX security policy is applied on Microsoft Windows 10 Enterprise 2016 LTSB (x64) and Microsoft Windows Server 2016 Standard (non-Domain Controllers) through installation of high security software packages. Honeywell supplies high security model as two separately installable packages on the Experion LX System Software CD/Experion LX Application DVD, they are as follows:

• **Experion – High Security Domain Controller Package** – This package creates the security components on the Domain Controller, including the secure Group Policy Objects (GPOs) and global groups.
• **Experion – High Security Workstation Package** – This package is installed automatically on every Experion LX node whether in a domain for workgroup. It creates the security components on workstation or member server nodes.

Attention

Domain Controller - Experion – High Security Domain Controller Package

The domain security package installation performs the following tasks.

• Creates Group Policy Objects (GPOs) for each user type
• Creates global groups used to assign user roles (refer to the “Domain account group” column in the table described in section “Honeywell High Security Policy” on page 145)
• Assigns the GPOs to roles using the Honeywell global groups
• Creates one global account and assigns it to the appropriate global groups

The domain security package does not modify file or registry permissions on the domain controller other than those applied to the global policy object files as required by Microsoft.

Results

The following modifications are made when you install the High Security Policy Domain Controller Package.

• Several Windows global groups are created.
• One service user account is created and added to the correct global groups.
• Group Policy objects are installed.
• Group Policy objects are linked to the created global groups.

The following Windows global groups are created.
• DCS Administrators
• Engineers
• Supervisors
• Operators
• Ack View Only Users
• View Only Users
• DCS Domain Servers

The DCSComServer domain user is created.

Experion – High Security Workstation Package

The High Security Policy workstation package is automatically installed with Experion LX software. The following modifications are an overview of the changes made when the package is installed.

• Local Windows groups used to define security roles are created (refer to the “Local account group” column in the table described in section “Honeywell High Security Policy” on page 145)
• Honeywell-required local user accounts are created and assigned to the correct local groups.
• Creates proxy files for managing Honeywell application access
• Ensures the workstation DCOM settings support interoperation within the system
• Establishes local computer policy settings
• Registry and file permissions are updated to secure access
• Provides the Link Domain Groups command that you must run to make specific global groups members of local groups – this integrates the workstation into the domain security model

Results

⚠️ **Attention**

To view the detailed settings made by the workstation security package, refer to the Workstation Security Settings section under Appendix chapter of the *Windows Domain and Workgroup Implementation Guide*.
15.3 File system and registry protection

Windows protects objects, including files, directories and registry keys, with Access Control Lists (ACLs). An ACL is a list of user accounts and groups, in which each entry specifies a set of allowed or disallowed actions.

- In the case of a file, actions include open, read, write, modify permissions, and so on.
- When applied to a directory, the permissions are, by default, inherited by all subordinate files and directories. The inheritance can be broken if required.

ACLs are discretionary in that they need not exist for an object, but once they do exist, all access to the object will be subject to the access control specified. New directories, files, or registry keys will inherit ACLs from their parent node.

When installed, Windows applies default ACLs to its system directories and registry trees to prevent malicious or accidental damage. Similarly, the Experion LX installation will apply ACLs to its directories and registry tree. In general, the site should not adjust those ACLs. However, for new files, folders, shares and registry keys, the site is responsible for adjusting or assigning permissions as appropriate to maintain an acceptable level of security. In most cases, Experion LX assigns modify permissions based on the local groups created by Experion LX installation, or the built-in administrators group. This is a best practice for site-created objects as well.

ACL protection can only be applied to files and directories if the containing file system is in NTFS format. Experion LX can only be installed on a disk partition with NTFS and so ACLs should be applied as described.

NTFS also supports the ability to encrypt files. Runtime data and executables are not suitable for encryption for performance reasons, but static configuration files such as those used by qxkbl, and archived data such as history may be encrypted if the additional level of protection is required. Note, however, that file encryption requires additional administrative work in the form of key management.

Most Experion LX data files are contained within the `C:\Program Files(x86)\Honeywell` and `C:\ProgramData\Honeywell` directories except where site choices save files to other locations. Experion LX registry keys are saved under `HKEY_LOCAL_MACHINE\Software\Honeywell` and `HKEY_CURRENT_USER\Software\Honeywell`. Files, folders, and keys created within these areas will inherit a default set of permissions that in most cases will be adequate without user adjustments. Changing ACLs in these areas is not advised.

⚠️ CAUTION

Changing ACLs for file and registry data used by Experion LX may either compromise the security of the control system, if security is made more open, or effect the operation of Experion LX if security is tightened.

15.3.1 File system ACLs

Experion LX Experion configures default file system security during installation, and in general, those permissions should not be changed by the site. Unless directed by the user, Experion LX uses the following two major file system folders to contain the files necessary for operation.

- `C:\Program Files(x86)\Honeywell` contains the executable files that make up the Experion LX application, as well as some data files that are created by install, and generally do not require user modification. This directory tree is secured such that most users have read and execute access, but only Administrators and some other highly privileged Microsoft-defined groups have modify permissions.

- `C:\ProgramData\Honeywell` contains installed files and folders that are to be modifiable at runtime as well as those created during the running of the system. This tree also has general read access, but write access is restricted as follows:
 - `C:\ProgramData\Honeywell\ProductConfig` is intended for Experion LX administration files. By default, all files and folders created within this tree are writable by Honeywell’s Product Administrators and Microsoft’s Administrators groups.
 - `C:\ProgramData\Honeywell\EngineeringData` is intended for data created and maintained by the engineering role that should not be modified by other users. This folder assigns write access to Honeywell’s Local Engineers and Microsoft’s Administrators groups.
– \textit{C:\ProgramData\Honeywell\Experion PKS\Server\Client\Templates} is intended for Quick Builder templates (and samples) that are created and maintained by the engineering role that should not be modified by other users. This folder assigns write access to Honeywell’s local engineers, product administrators and Microsoft’s administrators groups.

– \textit{C:\ProgramData\Honeywell\Experion PKS\Server\Data\EquipmentTemplates} is intended for downloaded equipment templates that are created and maintained by the engineering role that should not be modified by other users. This folder assigns write access to Honeywell’s local engineers, product administrators and Microsoft’s administrators groups.

– All other files/folders under \textit{C:\ProgramData\Honeywell} are general runtime data for Experion LX, and are assigned by default write access by all of Honeywell’s groups plus the Administrators group.

Specific procedures for managing file system ACLs are described in the \textit{Windows Domain and Workgroup Implementation Guide}.

\textbf{Attention}

A site may wish to tighten these permissions by applying more specific ACLs to files and directories, but should do so under Honeywell’s guidance. Incorrect permissions may prevent Experion LX from operating correctly.

15.3.2 Registry ACLs

Experion LX configures default registry security during installation, and in general, those permissions should not be changed by the site. Initial registry security is set as follows:

- \textit{HKLM\SOFTWARE\Honeywell} is intended for Experion LX administration data. By default, all keys created within this tree are writable by Honeywell’s Product Administrators and Microsoft’s Administrators groups, with the exception of the two keys described below.

- \textit{HKLM\SOFTWARE\Wow6432Node\Honeywell\EngineeringData} is intended for data created and maintained by the engineering role that should not be modified by other users. This key assigns write access to Honeywell’s Local Engineers and Microsoft’s Administrators groups.

- \textit{HKLM\SOFTWARE\Wow6432Node\Honeywell\ProgramData} contains general runtime data for Experion LX, and by default is assigned write access by all of Honeywell’s groups plus the Administrators group.

Specific procedures for managing registry ACLs are described in the \textit{Windows Domain and Workgroup Implementation Guide}.

\textbf{CAUTION}

Incorrect changes to the registry may create problems or cause severe damage to your system. Changes made to the Windows registry happen immediately, and no backup is automatically made. Before making changes to the registry, you must back up any valued data on your computer. For detailed information about backing up and restoring system data like registries, refer to the \textit{Backup and Restore Guide}.

15.3.3 File share Security

File shares must also be protected. By default, any directory which is made available for network access will give "read access" to the everyone group. Anyone on the network can read any file under the shared directory tree. This is generally too permissive. Any file shares created by the site should be careful to adjust share security to prevent unauthorized access/modification.

Experion LX configures share permissions on those shares required by Experion LX as follows:

- Read access should be allowed to only the Honeywell-created local groups and the Administrators group.

- Modify permission is granted only to those Honeywell-created local groups that require it, and the Administrators group.

- Broad groups such as “Users”, “Authenticated Users” and “ANONYMOUS LOGON” should be avoided for both read and write access.
15.4 System services

System services are background processes started by the system at boot time to provide functionality independently of any logged on user. While Experion LX itself runs as a set of these services, many of the system default services are not needed by Experion LX. However, they provide avenues for malicious network attack and must be disabled.

15.4.1 Services required by Windows operating system

For the list of Windows operating system services required by Experion LX, refer to the following links.

Ensure to identify the services that need to be disabled and perform the required testing if you make these changes.

15.4.2 Services required by Experion LX

The following table lists the Experion LX services installed during an Experion LX installation. Ensure to identify the services that need to be disabled and perform the required testing if you make these changes.

<table>
<thead>
<tr>
<th>Service name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Server (IIS)</td>
<td>Refer to “Other Microsoft services” on page 153 for more information.</td>
</tr>
<tr>
<td>Windows Terminal Services</td>
<td>Refer to “Other Microsoft services” on page 153 for more information.</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
</tbody>
</table>

15.4.3 Services required by third-party applications

The following table lists the third-party application services required by Experion LX applications that are installed as part of an Experion LX installation.

<table>
<thead>
<tr>
<th>Service name</th>
<th>Description</th>
<th>Experion LX Server</th>
<th>Console Station</th>
<th>Flex Station</th>
<th>Console Extension Station</th>
<th>SIM / APP</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AppSight Black Box Service</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EloSystemService</td>
<td>Elo TouchSystem services</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service name</td>
<td>Description</td>
<td>Experion LX Server</td>
<td>Console Station</td>
<td>Flex Station</td>
<td>Console Extension Station</td>
<td>SIM / APP</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Iap</td>
<td>Provides routing services for components of Dell OpenManage Client Instrumentation (OMCI).</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrox.Pdesk k.ServicesHost</td>
<td>Desktop Management Service Control.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVIDIA Display Driver Service</td>
<td>Provides system and desktop level support to the NVIDIA display driver.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVIDIA Stereoscopic 3D Driver Service</td>
<td>Provides system support for NVIDIA Stereoscopic 3D driver.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentinel Keys Server</td>
<td>Manages Sentinel hardware keys attached to this computer.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentinel Protection Server</td>
<td>Manages Sentinel SuperPro and UltraPro keys attached to this computer.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SigmaTel Audio Service</td>
<td>Manages SigmaTel Audio Universal Jack configuration s.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQL Active Directory Helper Service</td>
<td>Enables integration with Active Directories.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service name</td>
<td>Description</td>
<td>Experion LX Server</td>
<td>Console Station</td>
<td>Flex Station</td>
<td>Console Extension Station</td>
<td>SIM / APP</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>SQL Server (MSSQLSERVER)</td>
<td>Provides storage, processing, and controlled access of data, and rapid transaction processing.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Service runs under <code>.\ExpSQLSvc</code> account.</td>
</tr>
<tr>
<td>SQL Server Agent (MSSQLSERVER)</td>
<td>Executes jobs, monitors SQL Server, fires alerts, and allows automation of some administrative tasks.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Service runs under <code>.\ExpSQLSvc</code> account.</td>
</tr>
<tr>
<td>SQL Server Browser</td>
<td>Provides SQL Server connection information to client computers.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Service disabled.</td>
</tr>
<tr>
<td>SQL Server VSS Writer</td>
<td>Provides the interface to backup/restore Microsoft SQL server through the Windows VSS.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.5 Other Microsoft services

Experion LX relies on the presence of several complex Microsoft services that need to be configured securely.

15.5.1 Internet Information Services

Internet Information Services (IIS) is needed for the following Experion LX functionality.

- Alarm Pager option (e-mail notification)
- eServer

IIS 6.0, as installed on Windows 2003, has most options disabled by default, unlike IIS 5.0 which had to have unwanted options disabled by use of the IIS Lockdown tool. The installation instructions for IIS 6.0 and details of the components required for Experion LX are documented in the *Experion Software Installation and Upgrade Guide*.

It is strongly recommended that you run the Microsoft Baseline Security Analyzer (refer to the section “Using Microsoft Baseline Security Analyzer” on page 130).

In setting up and maintaining IIS you must also ensure the following:

- Keep the number of virtual directories to a minimum. These are the access points used by the outside world, and will therefore be the target for hackers.
- Do not place executable .asp files and read only .html files in the same directory:
 - Directories containing HTML should have read-only permission
 - Directories containing ASP files should have execute-script permission only
- Never have network share directories within a virtual directory tree. If a user can write an .html or .asp file within a virtual directory, then that page can be executed by a browser and, with the help of scripting, can do untold damage to the system; for example they can delete files. File and directory permissions may be further contained with NTFS security options. IIS will compare its own permissions with those of NTFS and use the most restrictive.
- Where possible do not allow anonymous connections, since there is no indication who is calling. Where access is intranet, that is, from trusted domains, enable NT challenge/response so that IIS can determine the caller's identity. Mixed mode connections can be allowed by enabling both anonymous and NT challenge connections and using NTFS to prevent access to those directories requiring client identity checking.

15.5.2 SQL Server

The following information relates to Experion LX requirements in relation to SQL Server. If other databases are hosted by the Experion LX SQL Server, then their own security model must also be applied.

Experion LX processes use integrated authentication to access the SQL database through the Honeywell Administrators group account.

The following security recommendations apply to SQL Server.

- Where possible, do not give users access to multiple databases.
- Run Microsoft Baseline Security Analyzer (refer to “Using Microsoft Baseline Security Analyzer” on page 130) on your SQL Server.

Note that Experion LX installation process sets authentication to "Windows only" and ensures that the password is not blank.
15.5.3 Windows Terminal Services

Windows Terminal Services allows you to run Microsoft Windows-based programs on a server and display them remotely on client computers connected to the LAN. This can be a useful facility for remote administration, engineering and monitoring activities, but does provide an additional avenue for attack.

Several levels of protection are available which are detailed in Microsoft documentation. The fewer people given Terminal Services access the better, and logon rights should be removed as soon as access is no longer needed. Communications should be set to be encrypted.

The easiest way of allocating Terminal Services access to users is to place all such users in a special group and use the Terminal Services session manager to give that group, rather than the "Everyone" group, Terminal Services logon rights.

15.5.4 Remote Access Server

The Remote Access Service (RAS) allows remote workstations to establish a dial-up connection to a LAN and access resources on the LAN as if the remote workstation were on the LAN; that is to provide "terminal services" like functionality over a dial-up line.

It is important to secure RAS if it is available and configured in your system. RAS can be used to allow dial-up access for engineers running a remote Station, or for an administrator when performing remote diagnostics, but can also be a significant security risk.

Ensure to follow the following guidelines.
- Only give dial-in access to those users who need it.
- Revoke this right as soon as the need has passed.
- Ensure that their passwords are strong, and are changed frequently.
- Configure RAS to use encrypted authentication to prevent password stealing.
- If the computer is connected directly to a modem, consider limiting the valid TCP/IP ports available for connection.

15.5.5 SMS Network Monitor

The SMS Network Monitor is a very useful tool which intercepts and displays network packets. Access to the tool should be controlled by password. In addition, both Microsoft Windows Server 2016 Standard servers and Microsoft Windows 10 Enterprise 2016 LTSEB (x64) workstations have a Network Monitor agent which allows a remote monitor to intercept packets to or from that computer. The agent should also be password-protected using the Monitor Agent panel applet.
15.6 Use the firewall on Microsoft Windows 10 Enterprise 2016 LTSB (x64) and Microsoft Windows Server 2016 Standard machines

About firewall settings

Honeywell applications set the correct firewall settings when they are installed. Honeywell recommends that you leave these settings at their default values in order that the applications function at their optimum levels.
15.7 Microsoft Windows 10 Enterprise 2016 LTSB (x64) and Microsoft Windows Server 2016 Standard registry and other settings

Microsoft Windows 10 Enterprise 2016 LTSB (x64) and Microsoft Windows Server 2016 Standard have many registry settings that can be used to increase the overall security of a system.

Note, however, that extreme caution needs to be exercised when making any changes to the registry. For more information, refer to the section “File system and registry protection” on page 148.

There are additional security considerations you may want to consider to increase your system security. For more details refer to *Microsoft Windows Server 2016 Standard Security Compliance Management Toolkit*.

Disable the caching of previous logons

Windows remembers the credentials of previous logged on users so that in the event of the domain server being unavailable, those users can continue to log on. Some security experts recommend that this caching be disabled to prevent sensitive information remaining in memory and hence being vulnerable to attack.

This can, however, lead to a denial of service. If the control room is disconnected from the domain server; the user cannot logon until the control room re-connects to the domain server.

** Harden the TCP/IP stack**

Windows supports a number of options to help TCP/IP defend itself from well-known network attacks. Although it is recommended that these options be set for maximum protection, care must be taken to allow for the characteristics of individual LANs.

The following Microsoft link provides the details

16 Glossary

Access Control List (ACL)
A list of user accounts and groups, each entry specifying a set of allowed, or disallowed actions. When applied to a firewall, an ACL is a list of node addresses and ports that may (or may not) pass through the device.

Authentication
When a user logs on to a system the authentication process verifies that a user is known to the system. Also refers to authorization.

Authorization
When a user logs on to a system, the authorization process controls what a known user can do within the system. Also refers to authentication.

Business Network
A collective term for the network and attached systems at Level 4. Also refer to “Levels 1 through 4”.

Configuration Studio
Configuration Studio is an Experion tool that provides a central location from which you can configure your Experion LX system. Configuration Studio presents a customized list of tasks that you are required to complete to configure your system. The list of tasks is automatically generated based on your license details. When you click a task, the appropriate tool is launched so that you can complete the task.

Console
A logical grouping of Console Stations and Console Extension Stations.

Console Extension Station
A Station that provides similar functionality to a “Flex Station”, but is hosted by a Console Station rather than an Experion server.

Console Station
A station that has direct access to Process Controllers in addition to the server. Consequently, there is no loss of view of critical process data if the server fails.
Compare with a “Flex Station”.

Controller
Generic term for a device that is used to control and monitor one or more processes in field equipment. Controllers include Programmable Logic Controllers (PLCs), loop controllers, bar code readers, and scientific analyzers.
Demilitarized Zone (DMZ)
A demilitarized zone (or DMZ), is an area with some firewall protection, but which is visible to the outside world. This is where public servers for Web sites, file transfers and email are located. More sensitive, private services such as internal company databases, intranets and so on are placed behind a further firewall and have all incoming access from the Internet blocked. You can also create an effective DMZ with just one firewall by setting up access control lists (ACLs) that let a subset of services be visible from the Internet.

Distributed Systems Architecture (DSA)
An option that enables multiple Experion LX systems to share data, alarms, and history.

Electronic Signature
A combination of a user ID and password which are used as the legally binding equivalent of a handwritten signature.

Emergency Repair Disk (ERD)
One of the options available with the Microsoft Windows Backup utility is the creation of an Emergency Repair Disk that can help you to fix damaged system files or repair a computer that will not start.

FIM
Fieldbus Interface Module.

Firewall
A firewall is a software or hardware barrier that sits between two networks, typically between a LAN and the Internet. A firewall can be a standalone network appliance, part of another network device such as a router or bridge, or special software running on a dedicated computer.

Firewalls can be programmed to block all network traffic from coming through except that which has been configured to be allowed. By default, a firewall should block all 65,536 ports and then open up only the ports you need. So, if you need to browse the web, then it should allow "outgoing" traffic on port 80. If you would like DNS lookups to work for you then you would need to open up port 53 for "outgoing" traffic. If you want to access your internet mail server through POP3, then you would open up port 110 for outgoing traffic. Firewalls are directional, that is, they pay attention to where the traffic originates, that is, whether it is "incoming/inbound" and "outgoing/outbound".

Quite frequently you will not want any unsolicited inbound traffic unless you have specific reasons (for example, you might have a web server that you want people to be able to access). However, in most cases, a web server would probably be located outside your firewall and not on your internal network. This is the purpose of a “Demilitarized Zone (DMZ)".

The following Microsoft reference is a useful source of information about well known TCP/IP ports:
http://support.microsoft.com/default.aspx?scid=kb;en-us;832017

Flex Station
A Station that is generally installed on a computer other than the server computer; which is connected to the server using either a static or rotary connection.
Compare with a “Console Station”.

FTE
Fault Tolerant Ethernet, the control network for Experion LX.

IP
Internet Protocol.
LAN
Local Area Network.

Levels 1 through 4
The location of a node within an Experion network and attached systems are often categorized in terms of a series of levels.

- Level 1 is where real time control takes place
- Level 2 is where supervisory control takes place
- Level 3 is where advanced control and advanced applications reside
- Level 4 is where the business network resides

Levels 1 to 3 inclusive constitute the “Process Control Network (PCN)”. Between Levels 3 and 4 you might have a “Demilitarized Zone (DMZ)” to help restrict unauthorized access to the process control network.

Locking Down
The procedure whereby a given user is given access to only one or a few specific programs is known as "locking down" a desktop or computer.

MAC
In Wireless 802.11, MAC stands for Medium Access Control. The lower level of the Data Link Layer (under the IEEE 802.11-1997 standard).

Can also be an abbreviation for Message Authentication Codes, a cryptographic hash added to a message to enable the detection of tampering.

MES
Manufacturing Execution Systems.

MRP
Manufacturing Resource Planning.

Network Address Translation (NAT)
This is a protocol that enables networks to access the Internet by translating private IP addresses.

Node
A node is a processing location within a network. It can be a computer or some other device, such as a printer.

Process Control Network (PCN)
A collective term for the network and connected systems at Levels 1 through to Level 3. Also refers to “Levels 1 through 4”.

PHD
Process History Database. PHD is Honeywell's advanced historian, providing distributed data collection, and data consolidation.

Port
A port is a logical endpoint on a network node used for communications. There are approximately 65,536 ports on which any one IP address can communicate. Some are dedicated to specific well-known services; some are used by application services; and some will be dynamically allocated to clients as they connect to remote services. A service listens on a known port for client connections, if the connection is accepted then the client will address messages to that port, the server will send responses to the dynamically allocated client port.
Process Controller
Experion LX’s controller can handle all possible control requirements, whether for continuous processes, batch processes, discrete operations, or machine control needs. The term is used to refer to all control hardware (chassis, power supply, Control Processor) as a single entity.
Points on a Process Controller are called process points.

Redundant Server
In a redundant server system, the backup server is actively linked to the primary (running) server, so that it can take immediate control if the primary server fails or is shut down. When synchronized, any change made to the primary's database will be automatically reflected in the backup's database.

Subnet
A group of hosts that form a subdivision of a network.

Subnet Mask
A subnet mask identifies which bits of an IP address are reserved for the network address. For example, if the IP address of a particular node is 192.168.2.3 with a subnet mask of 255.255.255.0, this subnet mask indicates the first 24 bits of the address represent the network address and the last 8 bits can be used for individual node addresses on that network.

Switch
A switch is a multi-port device that moves Ethernet packets at full wire speed within a network. A switch may be connected to another switch in a network. Switches direct packets to a destination based on their MAC address. Each link to the switch has dedicated bandwidth (for example, 100 Mbps).

Station
The Experion LX operator interface.

TCP/IP

Terminal Server
A terminal server allows you to connect several controllers and Stations to a network even though they only have serial or parallel ports. Most terminal servers also provide a range of serial connection options, such as RS-232, RS-422 and RS-485.

Uninterruptible Power Supply (UPS)
For a process control network, reliable power is essential, so it is important to provide an uninterruptible power supply (UPS). If the site has an emergency generator, the UPS battery life may only need to be a few seconds; however, if you rely on external power, the UPS probably needs several hours supply.

Uplink
Any interface that connects switches to switches or switches to routers.

WAN
Wide Area Network.

WSUS
Microsoft Windows Software Update Services.
17 Notices

Trademarks
Experion® and SafeBrowse® are registered trademarks of Honeywell International, Inc.

Other trademarks
Microsoft and SQL Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Trademarks that appear in this document are used only to the benefit of the trademark owner, with no intention of trademark infringement.

Third-party licenses
This product may contain or be derived from materials, including software, of third parties. The third party materials may be subject to licenses, notices, restrictions and obligations imposed by the licensor. The licenses, notices, restrictions and obligations, if any, may be found in the materials accompanying the product, in the documents or files accompanying such third party materials, in a file named third_party_licenses on the media containing the product, or at http://www.honeywell.com/ps/thirdpartylicenses.

Documentation feedback
You can find the most up-to-date documents on the Honeywell Process Solutions support website at:

http://www.honeywellprocess.com/support

If you have comments about Honeywell Process Solutions documentation, send your feedback to:

hpsdocs@honeywell.com

Use this email address to provide feedback, or to report errors and omissions in the documentation. For immediate help with a technical problem, contact your local Honeywell Technical Assistance Center (TAC).

How to report a security vulnerability
For the purpose of submission, a security vulnerability is defined as a software defect or weakness that can be exploited to reduce the operational or security capabilities of the software.

Honeywell investigates all reports of security vulnerabilities affecting Honeywell products and services.

To report a potential security vulnerability against any Honeywell product, please follow the instructions at:

Submit the requested information to Honeywell using one of the following methods:

• Send an email to security@honeywell.com.

or

• Contact your local Honeywell Technical Assistance Center (TAC) listed in the “Support” section of this document.
Support
For support, contact your local Honeywell Process Solutions Customer Contact Center (CCC). To find your local CCC visit the website, https://www.honeywellprocess.com/en-US/contact-us/customer-support-contacts/Pages/default.aspx.

Training classes
Honeywell holds technical training classes about Experion LX. These classes are taught by experts in the field of process control systems. For more information about these classes, contact your Honeywell representative, or see http://www.automationcollege.com.